
Chapter 1 
 

 

Mechanics. Oscillations. 
 

 

1.1  Quantities, Principles and Fundamental Laws in 

Classical Mechanics 
 

1.1.1. Notions and Basic Quantities in Classical Mechanics 
 

 

Mechanics studies the simplest form of motion of the matter, the mechanical 

motion. The mechanical motion is the motion that causes the change in the position 

of the bodies, ones relative to the others or of their parts in space and in time. 

Classical Newtonian mechanics studies the motion of the bodies that have 

much slower speeds than the speed of the light in vacuum, c=3· 108 m/s. 

Under classical mechanics, there is a series of fundamental laws (principles): 

the law of inertia or of the conservation of the impulse, the law of motion of a 

material point or of variation of the impulse, the law of reciprocal actions, the law 

of superposition of the forces, the law of gravitation. There are other laws besides 

the fundamental ones, like those concerning material: the law of elasticity, the law 

of friction etc. 
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The principle represents a statement suggested by an observation which 

meets the condition that all the consequences that result from its acceptance do not 

contradict the observation. 

The pattern from which the classical mechanics develops is based on the 

causality principle and states that, under given initial conditions, a physical process 

always develops in a particular way. To the same causes there correspond the same 

effects. 

The law represents a mathematical relationship which relates different 

physical quantities amongst themselves. 

The main physical quantities presented in this chapter are: speed, 

acceleration, force, impulse, moment of force, angular momentum, kinetic energy, 

potential energy, mechanical work. 

Kinematics is that part of mechanics that establishes the mathematical 

equations describing the motion of the bodies, disregarding the cause of the motion. 

Dynamics is concerned with the study of the causes that produce the motion 

and establishes the mathematical equations that describe the motion. 

In mechanics there is introduced the notion of material point. 

By material point we understand a body of which dimensions can be 

neglected when its motion is studied. The motion is studied with respect to a 

referential system, arbitrarily chosen, as there is no absolutely fixed system of 

reference relating to which all motions can be studied. Hence, the motion and the 

rest are relative. 

The reference system can be inertial or non-inertial. The inertial reference 

system is the system that has a rectilinear uniform motion or is at relative rest. The 

non-inertial reference system has an accelerated motion. Under classical mechanics 

and special relativity, the inertial reference systems are considered. 
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To the reference system there is rigidly attached a reference frame. The 

motion of a moving body is univocally determined if, each moment, its coordinates 

are known in relation with the reference system chosen. In mechanics there are 

especially used: 

1) Cartesian coordinate system 

2) spherical coordinate system 

In the Cartesian coordinate system the position of a point P is given by the 

Cartesian coordinates x, y and z (Fig. 1.1). The vector rr , that connects the origin 

with point P, is called position vector or radius vector. 

  rr = x i
r

+ y j
r

 + zk
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 .      (1.1) 

 

 

 

 

 

                                                        

 
 

  Fig. 1.1      Fig. 1.2 

 

In general, any arbitrary vector A can be written: 
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where xA , A y  and A z  are called the components of vector A
r

  (Fig. 1.2). 
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 are unit vectors of the coordinate axes. One knows they satisfy the 

relations: 
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In the spherical coordinates system the 

position of a point P is given by the spherical 

coordinates r, θ, φ (Fig. 1.3).                   Fig. 1.3 

 Let Oxyz be a Cartesian coordinates system against which the motion of a 

material point P is studied. The motion can be determined if the law of variation 

with respect to time of coordinates x, y, z of the point and the initial conditions are 

known: 

  x = x(t),       y = y(t),   z = z(t)                              (1.4) 

The relations (1.4) are equivalent to the relations indicating how a position 

vector varies with time: 

  rr = rr (t),              rr (t) = x(t) i
r

+ y(t) j
r

 + z(t)k
r

.                         (1.5) 

 The relations (1.4) or (1.5) represent the law of motion of the material point. 

 

a) Speed 
Consider a material point that moves along a trajectory. At the moment t1  the 

material point is in position P1 and at the moment t 2  is in P 2 . We denote Δs – the 

length of the curve P1P 2 . The average speed is defined by the ratio between the 

space crossed by the moving body and the time needed for crossing the space: 
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     t
s

m Δ
Δ≡v .                 (1.6) 

 The average speed gives us a rather vague idea about the motion of the 

moving body. In order to increase precision, there needs to be introduced the notion 

of speed at a particular time, also called instantaneous speed. In point P1, the 

position vector is rr ( t1) whereas in point P 2 , it is rr ( t 2 ). Vector Δ rr  in Fig. 1.4 

represents the difference between them/ the displacement. Δr is the curve P1P 2 . 

The ratio Δ rr / Δt is a collinear vector with curve P1P 2  and defines velocity. 

Velocity is the rate of displacement. The magnitude of velocity is speed. If Δt  tends 

towards 0, then P 2 tends towards P1 and curve P1P 2 tends towards the tangent in 

P1. According to the definition of the derivative, we have: 

    
t
r

dt
rd

t Δ
Δ=

→Δ

rr

lim
0

 .  

By definition, instantaneous velocity vector is: 

dt
rdrr ≡v                                                              (1.7) 

       

d rr  having the orientation of the tangent line at the curve. Hence, in each point of 

trajectory, velocity v has the orientation of the tangent line at the trajectory and its 

direction coincides with the direction of material point. 

 

 

 

 

Fig. 1.4 
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 Like any vector, velocity can be written as follows: 

   kji zyx
rrrr vvvv ++= ,      (1.8) 

where xv , yv , and zv  are the velocity components. From the relations (1.1) and 

(1.7) it results: 

  
( )

k
dt
dz

j
dt
dy

i
dt
dx

dt
kzjyixd rrr
rrr

r ++=
++

=v    (1.9)  

            
By comparing the previous two relations, it results: 

  
dt
dx

x =v , 
dt
dy

y =v  , 
dt
dz

z =v      (1.10) 

The length (magnitude) of velocity  is: 

             

v = .vvv 222
zyx ++                (1.11) 

 

b) Acceleration 
A change in velocity is called an acceleration. Acceleration is defined as the 

rate of change of velocity of an object with respect to time. Objects are only 

accelerated if a force is applied to them. 

The instantaneous acceleration vector is defined by the relation:   
  

2

2v
dt

rd
dt
da

rr
r =≡                                                         (1.12) 

In terms of acceleration components, we can write: 

    kajaiaa zyx

rrrr ++=  .              (1.13) 

From the relations (1.8) and (1.12) it results:   
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By comparing the previous two relations, we get: 

  2
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x == , 2
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y == , 2

2v
dt

zd
dt

da z
z ==             (1.15)   

We can compute the length (magnitude) of the acceleration vector using the 

following equation:   

.222
zyx aaaa ++=r               (1.16) 

Let τr  denote the tangent unit-vector. Considering vr  = vτr  , we can write the 

relation (1.12) as beside:  

 
( ) .v

vv
dt
d

dt
d

dt
d

a
τ

τ
τ r

r
r

r +==                     (1.17)                

As τr  is a unitary vector, we have: 

     .1=⋅ττ rr
                         (1.18) 

By derivation with time, the relation becomes: 

    .00 =⇒=+
dt
d

dt
d

dt
d ττττττ

r
r

r
rr

r
   (1.19) 

This relation demonstrates the vectors τr  and  τrd / dt are perpendicular. Hence, 

τrd / dt has the orientation of the normal line at the trajectory: 

     ,n
dt
d

dt
d r

rr ττ =      (1.20) 

nr  being the normal unit-vector. Consequently, relation (1.17) becomes: 

        .vv n
dt
d

dt
da rrr ττ +=                (1.21)     

This relation demonstrates that the acceleration vector has two components, 

reciprocally perpendicular: 
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- a tangential component at the trajectory, ta , determined by the speed 

variation with respect to time: 

dt
dat

v= ,                (1.22) 

- a normal component at the trajectory, na , determined by the speed variation 

with respect to direction 

.v
dt
d

na
τ

=        (1.23) 

Considering that points P and P´ (Fig. 1.5) are very close 

to each other, we can write : 

 ,1
R
v

dt
ds

Rdt
d

R
dsdd =⋅=⇒== τ

τ
τα     

 

               Fig. 1.5 

where R is the curve radius of the trajectory in the proximity of point P. Hence, it 

results that :  

n
R

n
dt
dan

rrr 2vv == τ
                                                (1.24)  

By replacing (1.24) in (1.21), we obtain: 

    .vv 2

n
Rdt

da rrr += τ       (1.25) 

From this relation it results: 

     
dt
vdat =       (1.26) 
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     .v2

R
an =                                                         (1.27)  

                      

Particular situations   

1. In linear motion, R→ ∞ and it results na = 0. If the linear motion is also 

uniform, v = ct and, accordingly, ta  is also null. 

2. In circular uniform motion, .,0v nt aaact ==⇒=  

 

c) Mechanical  Work 
The physical quantities can be classified as follows: 

1)  state quantities/parameters (state functions) depend only on the current state of 

the system, not on the way in which the system got to that state; for example: 

kinetic energy, potential energy, the internal energy of a thermodynamic system 

etc.; 

2) process quantities/process functions which depend on the type of the process, on 

the path followed by the process/ are physical quantities that describe the transition 

of a system from an equilibrium state to another equilibrium state. As an example, 

mechanical work and heat are process quantities because they describe 

quantitatively the transition between equilibrium states of thermodynamic systems; 

for instance. 

  Let X denote any state quantity or process quantity. The infinitesimal 

variation of a state quantity is denoted by dX  because it is an exact differential. For 

a process quantity, denotation δX is used. Since quantity X depends on the path 

followed, δX is not an exact differential. Consequently, let δL and δQ denote the 

elementary work and the quantity of elementary heat respectively. 
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 Consider that upon a material point there is applied a force F
r

 that 

determines the displacement of a body along a trajectory. Generally,  

- force can vary with  respect to time, F = F(t); 
- force direction may not coincide with the direction of the material point 

displacement. 

 The elementary work done by force F
r

, that applies to the material point 

when it displaces its application point along the distance rdr , is defined by the 

following relation 

rdFL rr
⋅=δ                                                 (1.28) 

The total work done by force F
r

 when it displaces its application point from A to B, 

is: 

    .rdFL
B

A
BA

rr
⋅∫=→                          (1.29) 

  

d) Kinetic Energy   

 Kinetic energy is that part of the mechanical energy determined by the 

motion of a material point, generally of the body. 

 cE  or T denotes kinetic energy. 

 Force is equal to the impulse derivative with respect to time: 

    
dt
pdF
rr

= , vmp rr =                                   (1.30)  

We calculate elementary work as follows: 

  ( ) .2
vvv 2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⋅=⋅=⋅= mdmddt

rdpdrddt
pdL rrrrr
r

δ    (1.31)  

Kinetic energy is defined by the relation: 
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     .
2
v2mET c ≡≡               (1.32) 

Kinetic energy (energy of motion) is that part of the mechanical energy determined 

by the motion of a material point, generally of the body. 

From the previous two relations we obtain: 

     dTL =δ .                                  (1.33) 

In the case of the motion between A and B, by integrating relation (1.33), we get: 

  ( ) ( ) ,2
v

2
v 22

AB mm
ATBTdTBAL

B

A
−=−=∫=→      

      

TL BA Δ=→                                                             (1.34)  

  

Relation (1.34) is the mathematical expression of the theorem of the kinetic energy 

variation.  The theorem of the kinetic energy variation shows that the work done 

between two positions A and B is equal to the kinetic energy variation of the 

material point between the two positions. 

 

e) Conservative Forces  
The conservative forces are the forces for which the 

work done between two points A and B  (Fig. 1.6) does 

not depend on the path taken by the application point of 

the force, they are path-independent. In a more general 

sense, a conservative force is any force which may be  

expressed as a gradient of a scalar potential.     Fig. 1.6 

          .
)( )(1 2

∫ ∫ ⋅=⋅
B

CA

B

CA
rdFrdF rrrr

               (1.35)  

A B

(C1) 

(C2) 
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If the working point is displaced along the closed graph A →B→ A, the work 

done vanishes. 

0=→→ ABAL .                        (1.36) 

  

Hence, the work done by a conservative force along a closed graph is zero: 

∫ =⋅
)(

0
C

rdF rr
.              (1.37) 

By using the  Stokes-Ampère theorem, ∫ ∫∫ ⋅=⋅
)(C S

SdArotrdA
rrrr

, we obtain  

0curl =F
r

.                 (1.38) 

The curl of a conservative force vanishes. Examples of conservative forces 

are: gravitational force, electric force, elastic force. 

The non-conservative forces are the forces for which the work done between 

two points depends on the path. For example: friction and magnetism. 

  

f) Potential Energy 
 

  Potential energy is that part of mechanical energy that depends on the system 

configuration, which is on the position of the particles in a force field. Potential 

energy depends on the system coordinates. We can speak only of the variation of 

the potential energy. For instance, this variation can be turned into kinetic energy or 

vice versa. 

 As a result, the choice of the point where U = 0, called the zero-point of the 

potential energy or reference point, is arbitrary. In some cases, the choice of a 

certain zero-point of the potential energy is more convenient. The choice of any 

other zero-point of the potential energy gives the same result. 



 13

 The potential energy can be uniquely defined only for the conservative 

forces. Let us consider material point in a conservative force field. If the curl of a 

vector field is null, then this vector field results from a scalar field by applying the 

gradient (rot A
r

 = 0  ⇒   A
r

 = grad φ) since rot grad φ = 0, for any φ. 

With the conservative forces we obtain 0rot =F
r

. 

By definition, the scalar function from which F results is the potential energy: 

          gradUF −=
r

 ,                                 (1.39) 

 

and we have .grad ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
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∂
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∂
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z
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y
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x
UUF
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We compute elementary work: 
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and we obtain           
      dUL −=δ       (1.40) 
                        

If the application point of the force is disclosed from A to B, integrating the relation 

(1.40) we get: 

   ( ) ( )∫ −=−=→

B

A
BA BUAUdUL  .    (1.41) 

Let point A be arbitrarily designate the zero-point of the potential energy, that is we 

have U(A) = 0, ( )BUL B −=→.refpoint  and we get 
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  ( ) rdBU FL
B

rr
⋅∫==

→

.refpoint

Brefpoint
                                      (1.42) 

 The potential energy of a material point, in any position B from a 

conservative force field, is equal to the work done by the forces of the field in order 

to disclose the material point from the considered position to the reference point. 

 

 Examples 

 

1) Elastic Potential Energy 

We take the equilibrium position as reference point: U(0) = 0. 

   

   ( ) 2
200 xkdxxkdxFxU

xx
=∫−=∫= , 

and   

     ( ) 2
2xkxU =            (1.43) 

 

2) Electrical Potential Energy 

According to Coulomb’s law, the interaction force between two electric charges Q 

and q is: 

    rr
qQF rr

34 επ=             (1.44a) 

 

We take the reference point to infinity : U(r = ∞) = 0. 

 

( ) .4
1

4
1

4 23 r
qQdrr

qQrdrr
qQrdFrU

rrr επεπεπ =∫=⋅∫=⋅∫=
∞∞∞ rrrr

   (1.44b) 
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Considering that the electric potential at distance r from charge Q is given by 

the relation 

     ( ) r
qQrV επ4= ,                      (1.44c) 

one gets: 

          

   ( ) ( )rVqr
qQrU == επ4 .            (1.44d) 

 

3)  Gravitational Potential Energy 

According to the universal attraction law, the interaction force between two 

masses 1m and 2m (Fig. 1.7) is: 

 

 
 

         Fig. 1.7 

    ,3
21 rr

mmKF rr
=                                (1.45a)  

where K is the universal gravitational constant. Let ∞ be the reference point: U(r = 

∞) = 0. 

 

 ( ) ,11
21221 rmmKdrrmmKrdFrU

rr
−=∫=⋅∫=

∞∞ rr
                    (1.45b) 

 

    ( ) r
mmKrU 21−=             (1.45c) 

 

m1 m2
F
r

                    F
r
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For the bodies in the gravitational field from Earth, it is convenient to have 

zero-point of the potential energy at the Earth surface (Fig. 1.8): U(r = R) = 0. 

 

( ) ( )hRRMmKdr
r

MmKrdFhU
R

hR

R

hR +−⋅⋅=∫⋅⋅−=∫ ⋅=
++

111
2

rr
     (1.45d) 

 

   ( )
⎟
⎠
⎞⎜

⎝
⎛ +⋅⋅⋅= hRR

hMmKhU  .                     (1.45e) 

 

For low heights we have: h << R, R(R+h) ≅  R², 
 

   ( ) 2R
hMmKhU ⋅⋅⋅=  .       (1.45f)  

               Fig. 1.8 

At the Earth surface, the gravitational force is:  

 

  ;02 gmR
MmKF ⋅=⋅=  20 R

MKg = ,               (1.45g) 

where 0g  is the gravitation acceleration at the Earth surface. 

 Potential energy becomes: 

 
     U (h) = m · 0g · h            (1.46) 

 

 

 

 

 

m

h 

R 

M 
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1.1.2 Fundamental Principles of Classical Dynamics 
 

1) The Law of Inertia 

A material point tends to stay in a rectilinear uniform motion or at 

relative rest unless acted upon by an (external) force. 

 

2) The Fundamental Law of Dynamics 

In classical mechanics, mass is constant: m = const. 
 

  
( ) am

dt
dm

dt
md

dt
pdF r

rrrr
==== vv

, 

                  (1.47a) 

   amF rr
= . 

 
Statement. If a force F

r
 acts upon a body, it applies an acceleration directly 

proportional to and having the same orientation with F
r

 and inversely proportional 

with its mass. 

If const.v00 == ⇒⇒=
rrr

aF  

By using the components of force F
r

, we obtain:  

          

kFjFiFF
dt

rdmF zyx
rrrrrr

++== ;2
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k
dt

zdj
dt

ydi
dt
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dt

rd rrr
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2
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2
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2

2

2
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).( 2

2

2

2

2

2
k

dt
zdj

dt
ydi

dt
xdmkFjFiF zyx

rrrrrr
++=++

                          (1.47b) 

resultsit k and,,i of tscoefficien  thegIdentifyin
rrr

j  

 

   ,2

2

dt
xdmFx =                         (1.48) 

,2

2

dt
ydmFy =                                                 (1.49) 

2

2

dt
zdmFz = .               (1.50) 

  
The relations (1.48), (1.49) and (1.50) are equations of motion. They 

demonstrate that any motion can be decomposed in three linear motions by three 

perpendicular directions. The solutions to these equations represent the law of 

motion of the material point: 

   ( ) ( ) ( ).,, tzztyytxx ===     (1.51) 

By removing time from relations (1.51) we obtain the equation of the trajectory. 

  

3) The Law of Reciprocal Actions 

If one body acts upon another body with a force, the second one reacts 

with an equal force in magnitude but opposite in direction, called 

reaction. 
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4) The Law of the Superposition of Forces  

If more forces act upon a material point, each force acts independently 

of the others. 

 

 
1.1.3. Laws of Conservation 

  

1) The Law of  Conservation of Momentum 

The mathematical expression is  

   const.0; == ⇒= pF
dt
pdF rrrr

                       (1.52) 

Statement. An applied force is equal to the rate of change of momentum. 

 

2) The Law of Conservation of Angular Momentum 

The angular momentum of a particle with respect to a fixed point, called 

origin, is defined by the relation:   

    vrrrrr
mrprL ×=×= .                                        (1.53a) 

For a circular motion, pr rr ⊥  and we have: 

   .v90sinv rmrmL ⋅⋅⋅⋅⋅ ==
o             (1.53b) 

 The moment of force (torque) τr
r

,M  with respect to the same fixed point is 

defined by the relation: 

     FrM
rrr

×= .              (1.54)  
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Moment of force (torque)* 

 

From the above, we derive relation (1.53a) with respect to time: 

 

( ) ,vvvvv MFramrm
dt
dmrm

dt
rdmr

dt
d

dt
Ld rrrrrrr

r
rr

r
rr

r

=×=×+×=×+×=×=  

and 

dt
LdM
r

r
= .               (1.55) 

This relation is the mathematical expression of the theorem of the angular 

momentum variation. The statement of the theorem: the moment of force (torque) is 

equal to the variation with respect to time of the angular momentum or torque is the 

time-derivative of angular momentum. 

From relation (1.55) it results:    

const.0 =⇒= LM
rr

            (1.56a)  

 The statement of the conservation law of the angular momentum: if the 

resulting moment of force (torque) vanishes, then the angular momentum is 

constant with respect to time. This happens, for instance, with the motion in a 

central force field. In such a field, in any point, the force is orientated along the 
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position vector rr , if the origin of the coordinate axes is chosen in the center of the 

field. In this situation we have: 

   ( ) ( ) .0, =×== rrfrMrrfF rrrrr
           (1.56b) 

 Examples of central force fields: gravitational field, electric field created by 

an electric charge, etc. 

 

3) The Law of Conservation of  Mechanical Energy 

From the relations (1.33) and (1.40) one obtains: 

 
 δL = dT; δL = –dU; dT + dU = 0; d(T + U) = 0; 

     

                    (1.57) 

The statement of the law of mechanical energy conservation: on condition 

conservative forces act upon a material point, the sum of the kinetic energy and 

potential energy is constant with respect to time. 

The systems upon which only conservative forces act are called 

conservative systems. 

The systems upon which non-conservative forces can act as well, are 

called dissipative systems. In this situation, the mechanical energy decreases in 

time, turning into other forms of energy, like thermal energy. 

 

Views upon the Conservation Laws 

 

The conservation laws are a result of the fact that Euclidian space is 

homogeneous and isotropic and time is uniform. 

The free space is homogeneous, in other words, it does not differ from one 

point to another. If a figure is displaced, without rotation, from one place to another, 

T + U = const. 
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no change in its size or its geometrical properties occurs. Furthermore, the physical 

properties (inertia, internal forces) of a body do not change if that body is displaced 

to another point in space. Therefore, the geometrical and physical properties are 

invariant with the space displacement of the object. 

The space is isotropic, that means that all the directions are equivalent. 

The geometrical and physical properties of an object do not change if we rotate it in 

space. That is to say the geometrical and physical properties are invariable with 

rotation. 

Time is uniform. In other words, the laws of motion of any given system 

apply independently from the origin of time. For instance, Coulomb’s law or the 

gravitational law is the same at any time. 

The space homogeneity determines the conservation of momentum. The 

space isotropy leads to the conservation of the angular momentum as the time 

uniformity leads to the energy conservation. 
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1.2. Oscillations 
 

1.2.1. Classification 

 
 

A system is in stable equilibrium on condition it has minimum potential 

energy. If the system is displaced from the stable equilibrium position, there applies 

a force that tends to bring back the system into its initial position. For short 

displacement from the equilibrium position, this force is elastic: F = – kx. 

The oscillatory motion is the motion of a body, of a system, from one side to 

the other of the equilibrium position. A more general definition is the following: 

The oscillatory motions are those motions that repeat periodically or quasi-

periodically in time. 

A harmonic oscillator consists in a system which, when displaced from its 

equilibrium position, experiences a restoring force F proportional to the 

displacement x, F = – kx where k is a positive constant, the spring constant. 

When there is a single force F acting on the system, the system is called a 

simple harmonic oscillator. The system undergoes simple harmonic motion: 

sinusoidal oscillations about the equilibrium point, A constant amplitude is 

characterizing the motion and there is also a constant frequency (which does not 

depend on the amplitude). Amplitude is maximal displacement from the 

equilibrium. Frequency represents the number of cycles the system performs per 

unit time, and is 
T
1

=ν .   

In the presence of a frictional force (damping) proportional to the velocity, 

the harmonic oscillator is described as damped. In this case, the frequency of the 



 24

oscillations is smaller than in the non-damped case.  The amplitude of the 

oscillations is not constant, and decreases with time.  

If an external time-dependent force is acting on the oscillator, the harmonic 

oscillator is described as driven. 

Examples of oscillations: pendula (with small angles of displacement), 

masses connected to springs and acoustical systems, electrical harmonic oscillators 

(an LC circuit, a RLC circuit). 

In periodic oscillation, the values of all physical quantities characteristic of 

the oscillation process repeat at equal time intervals. The minimum time interval 

after which this value repeats is called period, T. Period represents the duration of a 

complete oscillation or period is the number of cycles as a result of time 

(time/cycle) or the time it takes the system to complete an oscillation cycle. Period 

is also the inverse of frequency. The (oscillation) frequency, v, is defined by the 

relation v = 1/T and represents the number of the complete oscillations done within 

the time unit. 

In quasi-periodic oscillations, only a part of the physical quantities get values 

that repeat at equal time intervals. 

         According to the physical character of the oscillation, there are: 

a) mechanical oscillations, when the kinetic energy is turned into potential 

energy and vice versa, like the oscillations of a pendulum, vibrations of a string, of 

a membrane etc.; 

b) electromagnetic oscillations, when electric energy turns into magnetic 

energy and vice versa, like the oscillations from an oscillation circuit 

c) electromechanical oscillations, when electric energy turns into mechanical 

energy or vice versa.  
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1.2.2. Non-Damped/Simple Harmonic Oscillations 

 
This type of motion is generated in an elastic force field, in the absence of 

friction. The object (system) is displaced from its equilibrium position and left free. 

Let us consider a mass m, undergoing such type of motion along axis Ox, and the 

origin of the coordinate system which identifies with the equilibrium position. 

Displacement of mass m about the equilibrium position at a given point is x . The 

simple harmonic oscillator has no driving force, and no friction (damping), so the 

oscillator experiences the elastic force: 

 
F = – k x,                (1.58) 

 
where k is the spring constant, hence the motion equation of the material point. 

According to the fundamental law of dynamics, one has: 

 

  )( 2

2

2

2

2

2

k
dt

zdj
dt

ydi
dt

xdmamF
rrrrr

++==    (1.59) 

 
As y = 0, z = 0, one gets: 

     2

2

dt
xdmF = .    (1.60a) 

            
Combining the relations (1.58) and (1.60) one obtains:    

  

    2

2

dt
xdxk =− ; 02

2

=+ x
m
k

dt
xd

.            (1.60b) 

 
By the denotation:  
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m
k=2

0ω      (1.61)  

one obtains: 

    02
02

2

=+ x
dt

xd ω .     (1.62) 

    
Equation (1.62) is the differential equation of the non-damped/simple 

harmonic oscillator. It is a 2nd order homogeneous linear differential equation. The 

so called characteristic equation is: 

    02,1
2
0

2 0 ωω irr ±=⇒=+ .          (1.63a) 

The solution to the equation (1.62) is:        
titi eBeBx 00

21
ωω −+= .            (1.63b)  

Using Euler’s formulas xixe xi sincos ±=± , one gets: 

  tBBitBBx 021021 sin)(cos)( ωω −++= .          (1.63c) 

We denote: 

211 BBC +=  )( 212 BBiC −=   

and one has:     

tCtCx 0201 sincos ωω +=           (1.63d)    

and substitute: 

ϕsin1 AC = ;  ϕcos2 AC = ,  

it results: 

)sincoscos(sin 00 ttAx ωϕωϕ +=           (1.63e) 

and 

    )sin( 0 ϕω += tAx .            (1.63f) 
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This relation represents the law of the non-damped/simple harmonic 

oscillatory motion. Alternatively, with the formula sinα  = cos(α  – π/2), the 

relation (1.63f) can be written as follows: 

   )cos( 10 ϕω += tAx  
21
πϕϕ −= ,  (1.64) 

where x  is the displacement, A  is the amplitude that equals the maximum 

displacement. 0ω  is the angular frequency of the solution, as it is determined only 

by its characteristics, (measured in radians per second). ϕω +t0  is the phase, while 

ϕ  – initial phase (at t = 0). 

The period 0T is the minimum time during which the material point stays in 

the same position, has the same speed, in terms of value and direction (therefore, 

the duration of a complete oscillation). We have x(t) = x( t + 0T ), Asin( 0ω t + φ) 

= Asin[ 0ω (t + 0T ) + φ],  0ω (t+ 0T ) +φ = 0ω t + φ + 2π,  0T  = 2π/ 0ω .                

Using relation (1.61) one obtains: 

    

k
mT π

ω
π 22

0
0 == .    (1.65) 

 
The frequency (measured in hertz), is given by: 

     
0

0
1
T

=ν .     (1.66) 

We determine the speed and acceleration of the material point undergoing 

harmonic oscillations (oscillatory motion) as follows: 

 

)cos(vv 00 ϕωω +=== tA
dt
dx

x ,     (1.67) 
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xtAaa x
2
00

2
0 )sin( ωϕωω −=+−== .   (1.68)  

In simple oscillations, acceleration is proportional and inversely directed to 

the displacement. 

We determine kinetic, potential and total energy of the oscillator at any t time 

as follows: 

  )(cos
2
1

2
v

0
222

0

2

ϕωω +== tAmmT ,   (1.69) 

  )(sin
2
1

2 0
222

0

2

ϕωω +== tAmxkU ,   (1.70) 

  222
0 2

1
2
1 AkAmUTE ==+= ω .    (1.71)  

     
The total energy is constant relative to time. Consequently, the simple 

harmonic oscillator is a conservative system. 

 

The Complex Numbers and the Harmonic Oscillation  

   
The displacement of the harmonic oscillatory motion is represented by the 

complex number: 

 )( 0 ϕω += tieAx , )]sin()[cos( 00 ϕωϕω +++= titAx .  (1.72) 

Under these conditions, the following convention is made: the displacement 

is given by the imaginary part of this complex. 
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The Vectorial Representation of the Harmonic Oscillation 

 

Any harmonic oscillation can be graphically 

represented, by a rotating vector A
r

, called  phasor 

(Fig. 1.9). The maximum displacement is given by 

the phasor's length and the phasor rotates in 

trigonometric (counterclockwise) direction at an 

angular frecquency 0ω . The phasor travels with 

velocity 2πA / T, which is the maximum speed    Fig. 1.9   

of the oscillator. So, the angle it makes with the x-axis gives the phase angle.  

 At t = 0, the phase φ denotes the angle made by the phasor with axis Ox,  

while at any t time, we have 0ω t + φ. The projection B of the terminal point of the 

phasor on axis Ox (as well as the projection on Oy) describes a harmonic 

oscillation. The vector method (phasor) is mainly used in the study of the two 

parallel/orthogonal harmonic oscillations of equal frequency.  

 

1.2.3. Particular Case of Simple/non-Damped Harmonic Oscillation. Simple 

Pendulum (Bob Pendulum). 

 

Simple (mathematical) pendulum consists of a weight m attached to a 

massless inelastic wire (rigid rod). Because of an initial push, it will swing back and 

forth under the influence of gravity over its central point. We assume that the bob is 

a point mass and motion occurs in a 2 dimensional plane (Fig. 1.10). The harmonic 

oscillations of the pendulum occur for small angular displacements about the 

equilibrium point, namely α  < 4° (small angle approximation). The motion is 

caused by the tangent component of  G
r

, tG : 

y 

O B x 
ϕ 
ωt 

)(tA
r

 

)0(A
r
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α 
l 

A 

Gt 
B 

Gn 

αα gmgmGt −≅−= sin ,             (1.74a) 

with minus because the gravitational force on 

the bob causes a decrease in angle. 

We apply the fundamental law of dynamics: 

 

   
dt
dmamGt

v== . (1.74b) 

 

                  Fig. 1.10 

We calculate linear acceleration ta  (AB = s): 

2

2vv
dt
dl

dt
da

dt
dl

dt
dsls t

ααα ==⇒==⇒= ,          (1.74c) 

2

2

dt
dlmGt
α= .            (1.74d) 

  
From the two expressions of tG  one gets: 

02

2

2

2

=+⇒=− αααα
l
g

dt
d

dt
dlmgm .           (1.74e)  

    
Let us denote: 

02
02

2
2
0 =+⇒= αωαω

dt
d

l
g

.            (1.74f)   

We get an equation identical with the differential equation of the simple/non-

damped harmonic oscillator, (1.62), α  being replaced by x. Therefore the solution 

to the new equation is:  

)sin( 00 ϕωαα += t                      (1.74g)  

and the period is given by:  
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g
lT π

ω
π 22

0
0 == .             (1.75)  

           

Apllications 

 

According to M. Schuler (1923), a pendulum whose period exactly equals the 

orbital period of a hypothetical satellite orbiting just above the surface of the earth 

(about 84 minutes) will tend to remain pointing at the center of the earth when its 

support is suddenly displaced. This represents the basic principle of Schuler tuning 

that has to be included in the design of any inertial guidance system that will be 

operated near the earth, such as in ships and aircraft. 

Because of the values of the gravitational acceleration g in the equation 

(1.75) the pendulum frequency is different at different places on earth. If we 

consider an accurate pendulum clock in Glasgow (g = 9.815 63 m/s2) and take it to 

Cairo (g = 9.793 17 m/s2), we must shorten the pendulum by 0.23%. 

Double pendulum: 

- in horology, a double pendulum represents a system of two simple 

pendulums on a common mounting which move in anti-phase. 

- in mathematics (dynamical systems), a double pendulum is a pendulum that 

has another pendulum attached to its end. This system is a simple physical system 

that exhibits rich dynamic behavior. A set of coupled ordinary differential equations 

describe the motion of a double pendulum. Also, for a value of energy greater than 

a certain one its motion is chaotic. 

A property of the double pendulum is that it undergoes chaotic motion, and 

shows a sensitive dependence on initial conditions. The image from Fig. 1.11 shows 
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the amount of elapsed time before the pendulum "flips over", as a function of 

initial conditions *. 

 

    
     

          Fig. 1.11* 

 
 

1.2.4. Damped Harmonic Oscillations 

 

The harmonic oscillator is known as damped in the presence of a frictional 

force (damping) proportional to the velocity. The frequency of the oscillations is 

smaller than in the non-damped case, and the amplitude of the oscillations is not 

constant and decreases with time.  

Damped oscillations are those oscillations with reduced amplitude due to the 

dissipation of energy, under the action of friction forces. The friction force acting 

upon the oscillator depends upon the given motional conditions. Let us consider the 

oscillator moving through fluid. In this case, at relatively low speed, the body is 

subject to a frictional force proportional to velocity, as in the Fig. 1.12: 
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Fig. 1.12 

 
 A mass attached to a spring and a damper. (The F in the diagram denotes an 

external force, which this example does not include.)* 

 

                  
dt
dxFr γγ −=−= v ,     (1.76) 

where γ  is a positive coefficient that depends on the nature of the fluid and is 

called damper constant. The minus signs the fact that the frictional force opposes 

the body displacement and has its direction contrary to velocity. In the case of 

stringed instruments such as guitar or violin, damping represents the quieting or 

abrupt silencing of the strings after they have been sounded. The strings can be 

modeled as a continuum of infinitesimally small mass-spring-damper systems 

where the damping constant is much smaller than the resonant frequency, creating 

damped oscillations. 

We consider that the displacement about the equilibrium point is small; 

consequently, the restoring force is elastic. According to the fundamental principle 

of dynamics, one gets: 

00 2
02

2

2

2

=++⇒=++ x
dt
dx

mdt
xdxk

dt
dx

dt
xdm ωγγ   (1.77) 
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and we denote 

δγ 2=
m

 and 
m
k=2

0ω , where δ  is called damping factor and 0ω  is called the 

(undamped) natural frequency (angular frequency of the oscillator in the absence of 

friction) of the system. Both parameters represent angular frequencies and have for 

units of measure radians per second.  

Using these denotations, the equation becomes:  

02 2
02

2

=++ x
dt
dx

dt
xd ωδ .    (1.78) 

Equation (1.78) is the differential equation of oscillations. It is a 2nd order 

homogeneous linear differential equation with constant factors. 

To the equation (1.78) we attach the equation: 

    02 2
0

2 =++ ωδ rr .     (1.79) 

 The solutions to the equation (1.79) are:   

    2
0

2
2,1 ωδδ −±−=r .     (1.80)  

 We distinguish two situations. 

 a) If the medium resistance is high, the factor γ  gets a high value, so that 

02
0

2 >−ωδ . In this case, solutions 2,1r  are real and the solution to the differential 

equation (1.78) becomes: 

 

     tt eAeAx )(
2

)(
1

2
0

22
0

2 ωδδωδδ −+−−−− +=     (1.81) 

 
According to relation (1.81), displacement decreases 

exponentially with time. The motion   

is no longer periodical. The body, no longer in 

equilibrium, returns asymptotically to it, without exceeding it.  Fig.1.13 

x 

t
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In this case, the motion is called aperiodic (Fig. 1.13). The system is said to be 

over-damped. An overdamped door-closer will take longer to close the door than a 

critically damped door closer.        

When 02
0

2 =−ωδ , δ  is real and the system is critically damped. An example of 

critical damping is the door-closer of many hinged doors present in public 

buildings. 

b) If the medium resistance is low, 02
0

2 <−ωδ . In this case, 2,1r  are complex: 

    22
02,1 δωδ −±−= ir .     (1.82) 

We denote: 

     22
0 δωω −= .     (1.83) 

       
The solution to (1.78) becomes: 

    titi eAeAx )(
2

)(
1

ωδωδ −−+− +=     (1.84) 

and one obtains: 

    )( 21
titit eAeAex ωωδ −− += .    (1.85)  

Using Euler’s formula, one gets: 

  ]sin)(cos)[( 2121 tAAitAAex t ωωδ −++= − .  (1.86)  

By substitution: 

   ϕϕ cos)(,sin 021021 AAAiAAA =−=+ .  (1.87)  

The displacement becomes: 

   )sincoscos(sin0 tteAx t ωϕωϕδ += −    (1.88)  

and one has: 

     )sin(0 ϕωδ += − teAx t .    (1.89)  
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In this case, the system is under-damped. In this case, the system oscillates   

at the damped frequency, which is a function of the natural frequency and the 

damping factor. Relation (1.89) represents the law of the damped oscillatory 

motion. The amplitude is: 

      teAtA δ−= 0)( .        (1.90)  

The amplitude is not constant, but decreases exponentially (Fig. 1.14). With ω  as 

the damped frequency the period T can be defined as the minimum time interval 

between two successive moves of the oscillator through the equilibrium point, in the 

same direction: 

 

 

 

 22
0

22
δω
π

ω
π

−
==T          (1.91) 

      

         Fig. 1.14   

and the period of the oscillations is bigger than in the non-damped case.   

 The damped oscillations are also determined by the following quantities:  

i) The damping ratio (decrement of damping), β  defined by the relation: 

Te
eA

eA
TtA

tA T
Tt

t

δβ δ
δ

δ

===
+

= +−

−

lnln
)(

)(ln )(
0

0   (1.92) 

and one gets:   

                Tδβ = .      (1.93)  

The stronger the damping is, the higher β  gets.     

ii) Equilibrium time of motion, τ , is the time relative to which the amplitude 

decreases e times.  

x

t
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1,)()( 1
)(

0)(
0 =⇒=⇒==+ −−

−
+− τδτ τδ

δ
τδ ee

e
eAeA

e
tAtA

t
t  

      
δ

τ 1= .     (1.94)  

The smaller τ  is, the stronger the damping gets. We can develop the motion 

law regard to τ  as below:  

    )sin(/
0 ϕωτ += − teAx t .    (1.95)  

ii) The quality (performance) factor, Q  is defined by the relation: 

τω0=Q .      (1.96)                

This relation is valid for an oscillator which is not strongly damped. In aperiodic 

motion we have: 

10
00 ≤==⇒≥

δ
ωτωωδ Q .     (1.97)  

In periodic motion: 

10
0 >=⇒<

δ
ωωδ Q .     (1.98)  

The higher Q  is, the more weakly the motion gets damped. 

 According to relation (1.89), oscillations stop after an infinite time. In reality, 

when amplitude becomes comparable to interatomic distance, we cannot speak of 

an oscillation of the whole body with such an amplitude. Thus, actually, the 

oscillations stop after a definite time.  

 In the damped oscillations, the energy that the oscillator needs in order to be 

displaced from the equilibrium point gradually turns into thermal energy due to 

friction. The damped oscillator is a dissipative system. 
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Analogy between the mechanical case and the electrical case, series RLC circuit: 

 
- force )(NF  – voltage )(VU ; 

- speed (m/s)v  – current intensity )(AI ; 

- displacement )(mx  – electric charge )(Cq ; 

- damper constant )/( skgγ  – resistance )(ΩR ; 

- mass )(kgm  – inductance )(HL ; 

- spring constant )/( mNk  – inverse of capacitance (elastance) )/1(
1

F
C

; 

- 
m
k

π2
1

  – 
CL
1

2
1
π

 . 

Analogy between the mechanical case and the electrical case, parallel RLC circuit: 

 
- force )(NF – voltage )(VU ; 

- speed (m/s)v  – 
dt
du

; 

- displacement )(mx  – voltage )(VU ; 

- damper constant )/( skgγ  – conductance )(
1 1−Ω
R

; 

- mass )(kgm  –capacitance )(FC ; 

- spring constant )/( mNk  – susceptance )/1(
1

H
L

; 

- 
m
k

π2
1

  – 
CL
1

2
1
π

. 
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1.2.5 Driven Harmonic Oscillations. Resonance. 

 

 In order to prevent the decrease of amplitude, due to energy dissipation, 

external energy needs to be communicated to the oscillator. This can be achieved if 

a periodic external force acts upon the oscillator. In driven oscillations, the 

following forces act upon the oscillator: elastic force eF , resistance force rF , and a 

periodic force, )sin(0 ϕω += tFFext , where ω  is the angular frequency of the 

external force. The oscillations are called driven, but they are also damped. 

 In the first moments, after the application of the external force, the 

oscillations are not stationary, in other words, they do not have a constant amplitude 

and pulsation. Meanwhile, the amplitude and pulsation vary according to a 

complicated law, the oscillations being under transient conditions. In time, the 

steady-state conditions are reached. 

 We determine the equation of motion and the law of motion: 

amFFF extre =++ ,              (1.99) 
    

)sin(02

2

ϕωγ +=++ tFxk
dt
dx

dt
xdm ,          (1.100) 

)sin(0
2

2

ϕωγ +=++ t
m
Fx

m
k

dt
dx

mdt
xd

          (1.101) 

 

and we denote 

δγ 2=
m

 and 
m
k=2

0ω , where δ  is called damping factor and 0ω  is called the 

(undamped) natural frequency (angular frequency of the oscillator in the absence of 
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friction) of the system. Both parameters represent angular frequencies and have for 

units of measure radians per second. We obtain: 

   )sin(2 02
02

2

ϕωωδ +=++ t
m
Fx

dt
dx

dt
xd

.          (1.102) 

This is the differential equation of the driven harmonic oscillations. It is an 

unhomogeneous 2nd order linear differential equation, with constant factors. The 

solution to this type of equation is the sum of the homogeneous equation solution 

and a particular solution, like the second member’s, partom xxx += . 

 The solution to the homogeneous equation is: )sin( 10 ϕωδ += − teAx t
om . 

 The particular solution is: )sin( ϕω += tAx . 

 In time, due to the damping, 0→omx  and, as a result, the solution to 

equation (1.102) will be: 

    )sin( ϕω +=== tAxxx part .          (1.103) 

Since the moment we can have such a solution (1.103), the oscillator is under 

steady-state conditions. Under these conditions, the oscillations have a frequency 

equal to the frequency of the external force. 

Considering (1.103) a solution to the equation (1.102), we can determine the 

constants A  and ϕ .  

)cos( ϕωω += tA
dt
dx

,             (1.104) 

    )sin(2
2

2

ϕωω +−= tA
dt

xd
.           (1.105)                

Introducing (1.103), (1.104) and (1.105) in (1.102) it follows: 

)sin()cos(2)sin()( 022
0 ϕωϕωωδϕωωω +=+++− t

m
FtAtA .         (1.106) 



 41

By developing sinus and cosinus and equating the coefficients of tωsin  and 

tωcos  it follows: 

    
m
FAA 022

0 sin2cos)( =−− ϕωδϕωω ,         (1.107) 

    0cos2sin)( 22
0 =+− ϕωδϕωω AA .         (1.108) 

  
From relation (1.108) one gets: 

    2
0

2

2
ωω
ωδϕ
−

=tg .                              (1.109) 

From the multiplication of (1.107) by ϕcos  and (1.108) by ϕsin  and sum 

of the new relations, one obtains: 

    
)(

cos
22

0

0

ωω
ϕ

−
=

m
FA .           (1.110) 

We develop ϕcos : 

 

  
2222

0
2

2
0

2

2 4)(
)(

1
1cos

ωδωω
ωω

ϕ
ϕ

+−
−±=

+
=

tg
.         (1.111) 

 
 Combining (1.110) and (1.111) one obtains: 

     
22222

0

0

4)( ωδωω +−
=

m
FA .        (1.112) 

According to relations (1.109) and (1.111), the amplitude, A  and the initial 

phase, ϕ  of the driven oscillations depend on pulsation ω  of the external force. 

The angular frequency value/modulus of the external force with maximum 

amplitude is called angular resonant frequency rω . The phenomenon of developing 
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a driven oscillation of maximum amplitude when rωω = , is called resonance. The 

angular resonant frequency is obtained from the maximum condition: 

   0)2(40 22
0

2 =+−⇒= δωωω
ωd

dA
                 (1.113) 

and we get 

     22
0 2δωω −=r  .                   (1.114) 

Embedding (1.114) in (1.112) we determine the value of the amplitude 

relative to resonance: 

    
22

0

0

2 δωδ −
=

m
FAr .           (1.115) 

The amplitude with regard to resonance is as higher as the damping 

factor/coefficient, δ  is lower. If the medium resistance is null, ωωδ == r,0  and 

∞→rA . This situation does not actually 

occur, as the medium resistance always 

interferes. The curves, as a result of the 

graph representation of the amplitude 

relative to the angular frequency of the 

external force, are called resonance 

curves. (Fig. 1.15). An example of 

resonance in Fig. 1.16.          Fig. 1.15 

A 

δ = 0 

δ2 < δ1 

δ1 

0           
21

ωωω rr    ω
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Fig. 1.16 
 

The Tacoma Narrows Bridge (shown twisting) in Washington collapsed 
spectacularly, under moderate wind, in part because of resonance*. 

 

 In physics, resonance is the tendency of a system to absorb more energy 

when the frequency of its oscillations matches the system's natural frequency of 

vibration (its resonant frequency) than it does at other frequencies. Examples of 

resonance: the acoustic resonances of musical instruments, the tidal resonance, 

orbital resonance as exemplified by some moons of the solar system's gas giants, 

the resonance of the basilar membrane in the biological transduction of auditory 

input, and resonance in electronic circuits. 

 1) Acoustic resonances. Strings under tension (lutes, harps, guitars, pianos) 

have resonant frequencies which are directly connected to the mass, length, and 

tension of the string. The wavelength that corresponds to the first resonance on the 

string is equal to twice the length of the string. For higher resonances correspond 

wavelengths that are integer divisions of the fundamental wavelength. 

 2) Tidal resonance. Tidal resonance (oceanography) occurs when the time it 

takes for a large wave to travel from the mouth of the bay to the opposite end, then 
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reflect and travel back to the mouth of the bay, equals the time from one high tide to 

the next. 

 3) Orbital resonance appears in the case of some moons of the solar system's 

gas giants. When two bodies have periods of revolution that are a simple integer 

ratio of each other a mean motion orbital resonance appears. Depending on the 

conditions, the orbit can be either stabilized or destabilized. When the two bodies 

move in a synchronized fashion and they never closely approach stabilization 

occurs. There are four gas giants in our solar system's: Jupiter, Saturn, Uranus, and 

Neptune (Fig. 1.17). Uranus and Neptune are a separate subclass of giant planets, 

'ice giants', or 'Uranian planets', because they are mostly composed of ice, rock and 

gas, unlike the "traditional" gas giants Jupiter or Saturn. They share the same 

qualities of the lack of the solid surface; their differences stem from the fact that 

their proportion of hydrogen and helium is lower, because they are situated at 

greater distance from the Sun. 

 

 
Fig. 1.17 

From top: Neptune, Uranus, Saturn, and Jupiter (sizes not to scale)*. 
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 4) Resonance of the basilar membrane in the biological transduction of 

auditory input. The membrane is tapered and it is stiffer at one end than at the other. 

Because of this, there is a sound input (frequency) that makes to vibrate a particular 

location of the membrane more than other locations due to the physical property of 

resonance. Georg von Békésy (Nobel Prize) showed in experiments that high 

frequencies lead to maximum vibrations at the basal end of the cochlear coil 

(narrow membrane), and low frequencies determine maximum vibrations at the 

apical end of the cochlear coil (wide membrane). 

 5) Resonance in electronic circuits. In an electrical circuit, resonance appears 

at a particular frequency when the inductive reactance equals the capacitive 

reactance. This determines electrical energy to oscillate between the magnetic field 

of the inductor and the electric field of the capacitor. An analogy is represented by 

the mechanical pendulum. At resonance, the series impedance of the two elements 

is at a minimum and the parallel impedance is a maximum. Resonance has 

applications in tuning and filtering, because resonance appears at a particular 

frequency for given values of inductance and capacitance. Resonance can produce 

unwanted sustained and transient oscillations in electrical circuits that may cause 

noise, signal distortion, and damage to circuit elements.* 
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1.2.6. Mechanical Oscillations 

 

 a) Two Parallel Harmonic Oscillatory Motions of Equal Frequency 

 Let us consider a material point undergoing two harmonic oscillatory motions 

of equal frequency along axis Ox: 

    )sin( 111 ϕω += tAx ,              (1.116) 

 

    )sin( 222 ϕω += tAx .              (1.117) 

  
The displacement of the resulted motion is given by: 

 

tAA
tAA
tAtA
tAtAxxx

ωϕϕ
ωϕϕ

ϕωϕω
ϕωϕω

cos)sinsin(
sin)coscos(

sincoscossin
sincoscossin

2211

2211

2222

111121

++
++=

=++
++=+=

.            (1.118) 

We denote: 

 22111 coscos ϕϕ AAB += , 22112 sinsin ϕϕ AAB += .           (1.119) 

One gets: 

   tBtBx ωω cossin 21 += .             (1.120) 

By substitution: 

   ϕcos1 AB = ; ϕsin2 AB =                           (1.121) 

 
and the displacement becomes: 

     )sin( ϕω += tAx .             (1.122)



The resulted motion is a harmonic oscillatory motion as well. Let us 

determine amplitude A  and the initial phase ϕ  of the resulted motion: 

 
   2211 coscoscos ϕϕϕ AAA += ,                    (1.123) 

             

    2211 sinsinsin ϕϕϕ AAA += .                    (1.124) 

 
By dividing these relations, it follows that: 

 

    
2211

2211

coscos
sinsin

ϕϕ
ϕϕϕ

AA
AAtg

+
+= .                    (1.125) 

 
Squaring and summing relations (1.123) and (1.124), we get: 

   )cos(2 1221
2
2

2
1

2 ϕϕ −++= AAAAA .                    (1.126) 

 The vector method leads to the same result. The vector representation (Fig. 

1.18) is useful mainly in the composition study of more oscillations, of similar 

frequency and direction. In this case, the polygon rule applies: a vector polygon is 

drawn; the vector that closes up the polygon outline represents the resulted 

oscillation (Fig. 1.19). 

 

 

 

 

 

 

  Fig. 1.18      Fig. 1.19 
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Particular Cases 

 

1) If  πϕϕ k212 =− , from relation (1.126) it follows 

     21 AAA +=                       (1.127) 

The resulted amplitude equals the sum of the component amplitudes. The two 

oscillations are considered in phase (Fig. 1.20). 

 

 

 

 
 
  Fig. 1.20      Fig. 1.21 

 

2) If  πϕϕ )1(212 +=− k , from relation (1.126) one gets: 

     21 AAA −= .                         (1.128) 

The oscillations, in this case, are in phase opposition (Fig. 1.21). 

3) If  2/)1(212 πϕϕ +=− k , from relation (1.126) it results: 

     2
2

2
1

2 AAA += .                      (1.129) 

The two oscillations are in a square relationship. 

 

 b) Two 0rthogonal Harmonic oscillatory Motions of Same Frequency 

Let us consider that a material point simultaneously undergoes two harmonic 

oscillations, one along Ox, the other along Oy: 

    tAx ωsin= ,                       (1.130) 

    )sin( ϕω += tBy .                     (1.131) 

In order to obtain the trajectory equation, we leave out the time from the relations. 

x 

t

x

t
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As a result, relation (1.130) becomes: 

  2

2
2 1sin1cossin

A
xtt

A
xt −=−=⇒= ωωω                   (1.132) 

Combining (1.131) and (1.132) one obtains: 

   ϕωϕω sincoscossin tBtBy += , 

   ϕϕ sin1cos 2

2

A
xB

A
xBy −+= , 

   ϕϕ sin1cos 2

2

A
xB

A
xBy −=− .                     (1.133) 

By squaring this relation, one gets: 

    ϕϕ 2
2

2

2

2

sincos2 =−+
BA
yx

A
x

B
y

.                    (1.134) 

The trajectory is an ellipse. The consecutive motion is an elliptical periodical 

motion (Fig. 1.22). 

 

 

 

 

 

 

     Fig. 1.22 
 

Particular Cases 

1) If  πϕϕ k212 =− , from relation (1.134) it follows: 
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B
y

A
x

BA
yx

A
x

B
y =⇒=−+ 02

2

2

2

2

.                    (1.135) 

The consecutive motion is a harmonic oscillatory motion along line 1D that 

represents the first diagonal from the amplitude rectangular. 

2) If  πϕϕ )1(212 +=− k , from relation (1.134) one gets: 

     
B
y

A
x −= .                       (1.136) 

The consecutive motion is a harmonic oscillatory motion along line 2D . 

3) If  2/)1(212 πϕϕ +=− k , from relation (1.134) it results: 

     12

2

2

2

=+
A
x

B
y

.                      (1.137) 

The motion is periodical on an ellipse around an axis. In particular, if BA = , the 

ellipse becomes a circle: 

     222 Ayx =+ .                      (1.138) 

Reciprocally, any circular periodical motion can be decomposed in two cross 

harmonic oscillations, of similar ν  and A , having the phase difference 

2/)1(2 π+k . 

If the frequencies are different, the consecutive trajectory has a more 

complicated form. If the frequency ratio is a rational number, 2121 // nn=νν , 

Nnn ∈21,  what we get are closed trajectories, called Lissajous figures. 
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Chapter 2 
 

Waves 

 
2.1 Definition. Classification. Physical Description of a 

Wave. Wave Equation. Propagation of Waves. Energy of 

Waves. Wave Intensity. 

 
2.1.1 Definition. Classification. 

A wave represents a disturbance that propagates through space, often 

transferring energy. A mechanical wave exists in a medium but waves of an 

electromagnetic radiation, and probably gravitational radiation can travel through 

vacuum. Waves travel and transfer energy from one point to another, without any 

of the particles of the medium being displaced permanently (there is no associated 

mass transport) but there are oscillations around fixed positions. 

Waves are characterized by crests (highs, maximums) and troughs (lows, 

minimums), either perpendicular (in the case of transverse waves) or parallel (in 

the case of longitudinal waves) to wave motion. 

A wave can be described by the wave function as: 

   ),(),,,( trtzyxf rψ==Ψ .           (2.1) 

The wave function can be a vector (a displacement in mechanics, magnetic 

field H
r

, electric field intensity E
r

) or a scalar quantity (electrical potential 

difference, pressure). 
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The wave front is the locus (a line or surface in an electromagnetic wave) of 

the points that have the same phase. We denote: 

   .),,,( constStzyx ==Ψ            (2.2) 

We have plane waves and spherical waves. Characteristic of a plane wave: 

has a constant-frequency and the wave fronts (surfaces of constant phase) are 

infinite parallel planes normal to the phase velocity vector. The waves that are 

approximately plane waves in a localized region of space are also called plane 

waves. For example, a localized source such as an antenna produces a field that is 

approximately a plane wave in its far-field region (the region beyond 

approximately 10 wavelengths from the antenna). 

 
 

Fig. 1.23 

Plane waves* 

 
A spherical wave is the wave that has spherical wave front. For example, an 

antenna produces a field that is approximately a spherical wave in region less than 

the far-field region (the near-field region). 

Spherical waves are the wave function given by: 

   ),(),,,( trtxyx Ψ=Ψ=Ψ ,           (2.3) 

where 222 zyxr ++= and: 

     )v(1 trF
r

−=Ψ                                (2.4) 
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Also, we have surface wave which is a wave that is guided along the 

interface between two different media for a mechanical wave. Examples: the waves 

at the surface of water and air, ocean surface waves, or ripples in the sand on the 

interface of water or wind. Another example is internal waves, waves that are 

transmitted along the interface of two water masses of different densities. Surface 

waves are encountered in seismology. There is an analogy between surface waves 

and water waves. Surface waves travel over the Earth's surface. Their velocity is 

smaller than the velocity of body waves. Their low frequency determines them to 

be more likely than body waves to stimulate resonance in buildings. They are 

therefore the most destructive type of seismic wave. There are two types of surface 

waves: Rayleigh waves and Love waves. 

Plane waves are described by ),,( tyxΨ : 

    )v( tkrF −⋅=Ψ
rr

,           (2.5) 

where 

    jyixr
rrr += .       (2.6) 

Circular waves are described by ),( trΨ  with 22 yxr += and: 

    )v(1 trF
r

−=Ψ            (2.7) 

 

 
 

Fig. 1.24 

Plane waves and circular waves* 
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 Examples of Waves*: 

1. Ocean surface waves. They represents perturbations that propagate through 

water (surfing and tsunami). Ocean surface waves are surface waves which appear 

at the surface of an ocean. They are waves guided along the interface between 

water and air. The wind transfers a part of its energy into the water, the water gains 

energy from the wind because of the friction between the wind and the water. The  

surface particles have an elliptical motion, which is a combination of longitudinal 

(back and forth) and transverse (up and down) wave motions. 

 

Fig. 1.25 
 

Breaking waves at La Jolla* 

 

 Individual "freak waves" (also "rogue waves", "monster waves" and "king 

waves") can occur in the ocean, often as high as 30 metres. Such waves are 

different by tides and tsunamis. 

There are three main types of waves that are identified by surfers: plunging 

waves ("dumpers"), spilling waves and surging waves. Their properties make them 

more or less suitable for surfing and present different dangers. 

2. Electromagnetic radiation: radio waves, microwaves, infrared rays, visible light, 

ultraviolet rays, x-rays, and gamma rays. In this case, propagation is possible 



 55

without a medium, through vacuum. These electromagnetic waves travel at 299 

792 458 m/s in a vacuum. 

In the case of microwaves the wavelengths is longer than those of infrared 

light, but relatively short for radio waves. Microwaves have wavelengths 

approximately in the range of 30 cm (frequency = 1 GHz) to 1 mm (300 GHz). 

 

 
 

Fig. 1.26 

Microwave image of 3C353 galaxy at 8.4 GHz (36 mm)*. 

 

 Infrared (IR) radiation is electromagnetic radiation of a wavelength longer 

than that of visible light, but shorter than that of microwave radiation. The name 

means "below red" (from the Latin infra, "below"), red being the color of visible 

light of longest wavelength. Infrared radiation spans three orders of magnitude and 

has wavelengths between approximately 750 nm and 1 mm. 

 The visible spectrum (optical spectrum) is the region of the electromagnetic 

spectrum that is visible to the human eye. Electromagnetic radiation in this range 

of wavelengths is called visible light or simply light. There are no fixed bounds to 

the visible spectrum, because a typical human eye can respond to wavelengths 

from 400 to 700 nm, although wavelengths from 380 to 780 nm can be perceived. 

A light-adapted eye has its maximum sensitivity at around 555 nm, in the green 
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region of the optical spectrum. The spectrum does not contain all the colors that the 

human eyes and brain can distinguish, for example brown and pink are absent. 

 

 

Fig. 1.27 

Ultraviolet (UV) radiation is electromagnetic radiation of a wavelength 

shorter than that of the visible region, but longer than that of soft X-rays. There is 

near UV (380–200 nm wavelength), far or vacuum UV (200–10 nm FUV or VUV), 

and extreme UV (1–31 nm EUV or XUV). 

X-rays have a wavelength in the range of 10 to 0.1 nanometers, 

corresponding to frequencies in the range 30 to 3000 PHz. X-rays are primarily 

used for diagnostic medical imaging and crystallography. Because X-rays are a 

form of ionizing radiation they can be dangerous. 

Gamma rays (γ) are electromagnetic radiation produced by radioactive 

decay or other nuclear or subatomic processes such as electron-positron 

annihilation. They are begin at an energy of 10 keV, a frequency of 2.42 EHz, or a 

wavelength of 124 pm, although electromagnetic radiation from around 10 keV to 

several hundred keV is also referred to as hard X rays. Gamma rays and X rays of 

the same energy do not present physical difference. Gamma rays are distinguished 

from X rays by their origin. Gamma rays are a form of ionizing radiation. 

3. Sound is a mechanical wave that propagates through air, liquid or solids. Its 

frequency can be detected by the auditory system. Similar are seismic waves in 

earthquakes, S, P and L kinds. 

4. Gravitational waves, which are fluctuations in the gravitational field predicted 

by General Relativity. These waves are nonlinear.  
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2.1.1.1 Transverse and Longitudinal Waves 

 

Other classification of the waves includes transverse waves and longitudinal 

waves. This classification is made in function of the position of the vibrations and 

the direction of the propagation of the wave. 

Transverse waves are the waves with vibrations perpendicular to the 

direction of the propagation of the wave. Some examples: waves on a string, 

seismic waves and electromagnetic waves. 

Longitudinal waves are the waves with vibrations parallel to the direction of 

the propagation of the wave. Some examples include most sound waves, ripples in 

water, and certain types of waves from earthquakes, where the particle motion is in 

the direction of travel. 

In seismology transverse waves are called S (for “secondary”) waves as they 

arrive later than the P (“primary”) waves from an earthquake. The absence of 

transverse waves traveling through the earth’s core demonstrates that it is liquid. 

Also, transverse waves are connected to the curl operator and are governed 

by a vector wave equation. The longitudinal waves are connected to the div 

operator and are governed by a scalar wave equation. A longitudinal wave 

represents compressions moving through a plane. In this case the energy from the 

wave is transmitted as mechanical energy. An example is a slinky which was 

pushed forward and backwards, compressing and extending it as the motion of the 

wave was transmitted. Opposite, light is composed of transverse waves (electric 

component E
r

 and magnetic component H
r

). 

Examples of combination of transverse and longitudinal waves are the 

Ripples on the surface of a pond. Therefore, the points on the surface follow 

elliptical paths*. 
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Fig. 1.28* 
 

For an object that bobs up and down on a ripple in a pond, the trajectory is 

elliptical because ripples are not simple transverse sinusoidal waves. 

 

2.1.1.2 Physical Description of a Wave 

 

 There are a number of standard variables that can be used for describing the 

waves. These standard variables are: amplitude, frequency, wavelength and period. 

The amplitude of a wave represents the magnitude of the maximum disturbance in 

the medium during one wave cycle. The amplitude is measured in units depending 

on the type of wave. For examples, waves on a string have an amplitude expressed 

in meters, sound waves as pressure (pascals) and electromagnetic waves have the 

amplitude expressed in units of the electric field (volts/meter). If the amplitude is 

constant we have the case of the continuous wave or the amplitude can vary with 

time and (or) position. The envelope of the wave is the form of the variation of 

amplitude. 
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Fig. 1.29* 
 

The highest point of a wave is called crest (maximum)and the trough is the lowest 

point (minimum) of a wave. The distance between two crests or two troughs that 

are beside each other represents the wavelength λ . For electromagnetic radiation, 

it is usually measured in nanometres. 

 The period of the wave T  represents the time needed for one complete cycle 

for an oscillation of a wave. The frequency ν  is the inverse of period or how many 

periods per unit time (for example one second). Frequency is measured in hertz. 

Also, we have the relation: 

      
T
1=ν .                (2.8) 

If we want to express mathematically the waves we can use the angular 

frequency (ω, radians/second) which is related to the frequency ν  by: 

     νπω 2= .            (2.9) 
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2.1.1.3 Travelling Waves 

 

Standing waves are the waves that remain in one place. Examples: vibrations 

on a violin string, electromagnetic standing waves. Waves that are in movement 

are called travelling waves. They present a disturbance that varies both with time t  

and distance x . This can be expressed mathematically as: 

   )sin(),(),( ϕω +−=Ψ xkttxAtx ,      (2.10) 

where ),( txA  is the amplitude envelope of the wave, k  is the wave number and 

ϕ  is the phase. The velocity v  of this wave is given by: 

      νλω ==
k

v ,       (2.11) 

where λ is the wavelength of the wave. 

 The phase velocity of a wave represents the rate at which the phase of the 

wave propagates in space. In some cases the phase velocity of electromagnetic 

radiation can exceed the speed of light in a vacuum. No superluminal information 

or energy transfer are indicated. The phase velocity can be different by the group 

velocity of the wave. The group velocity represents the rate that changes in 

amplitude (the envelope of the wave) will propagate. 

 Also, we can write in the case when the propagation is towards the x0  axis: 

   )
v

(sint)v()
v

(),( xtAxFxtftx −=−=−=Ψ ω .     (2.11.a) 

The quantity )
v

( xt −ω  represents an angle. For Ψ  is available the periodicity in 

time with 
ω
π2=T   and, also, the periodicity in space with Tv=λ . The 

expression for Ψ can be written: 
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 )sin()(2sin)
v

(sin),( xktAx
T
tAxtAtx −=−=−=Ψ ω

λ
πω , (2.11.b) 

where: 

     
vv

22 ωπ
λ
π ===

T
k            (2.11.c) 

is the wave number and is the absolute value of the wave vector k
r

 

     nnnkk rrrr

v
2 ω
λ
π === .                    (2.11.d) 

 In the case of the propagation of the wave in space in the direction of the 

wave vector  k
r

 we have: 

   }Im{)sin(),( )( rktieArktAtx
rr −=−=Ψ ωω ,         (2.11.e) 

where 

     rkt r−=ωϕ             (2.11.f) 

is the phase of the wave.   

 The group velocity of a wave is the velocity with which the envelope of the 

wave propagate through space. The group velocity is defined by the equation: 

      
k

vg ∂
∂= ω

.            (2.12.a) 

About the group velocity we can say that is the velocity at which energy or 

information is conveyed along a wave. There is a direct connection between the 

group velocity and the dispersion. Dispersion is the phenomenon that causes the 

separation of a wave into components of varying frequency (wavelength). If ω is 

directly proportional to k, then the group velocity is exactly equal to the phase 

velocity. In the propagation of signals through optical fibers and in the design of 

short pulse lasers the "group velocity dispersion" is playing an important role. 
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2.1.2 Wave Equation 

 
The wave equation is a partial differential equation. The wave equation 

describes many types of waves such as the sound waves, light waves and water 

waves. It is important in acoustics, electromagnetics, and fluid dynamics. 

Also, the wave equation is an example of a hyperbolic partial differential 

equation. The wave equation (simplest form) refers to a scalar quantity Ψ , the 

wave function that satisfies: 

     Ψ∇=
∂
Ψ∂ 22
2

2

v
t

,           (2.12.b) 

where v  is the propagation speed of the wave. Also, for the case of ),,( zyxrr rr =  

one gets: 

    0
v
1

2

2

22

2

2

2

2

2

=
∂
Ψ∂−

∂
Ψ∂−

∂
Ψ∂−

∂
Ψ∂

tzyx
.          (2.12.c) 

For example, for a sound wave in air at 20°C the speed is about 343 m/s. The speed 

can have a wide variation, in the case of the vibration of a string depending upon 

the linear density of the string and the tension on it. For example, for a spiral spring 

it can be as slow as a meter per second. When we have dispersion, the differential 

equations for waves allows the speed of wave propagation to vary with the 

frequency of the wave. 

In this case, we have to replace v  in (2.12.b ) by the phase velocity: 

      
k

v ω= .           (2.12.d) 
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2.1.3 Propagation of Waves 
 

2.1.3.1 Propagation through Solids 
 

1) Longitudinal Waves 

In solids, there are two kinds of sound waves, pressure waves and shear 

waves. A non-zero stiffness both for volumetric and shear deformations is present 

in a solid. 

In a solid there are conditions for generating sound waves with different 

velocities dependent on the deformation mode. 

We have two cases: 

a) the propagation of longitudinal waves (pressure waves) through a solid rod when 

the length of the solid rod is finite (a bounded solid rod) or with thickness much 

smaller than the wavelength, and 

b) the propagation of transverse waves (shear waves) when the length of the solid 

rod is infinite (boundless) or with lateral dimensions much larger than the 

wavelength. 

a) We consider a solid rod and the length of the solid rod is finite (a bounded solid 

rod). We denote the cross section of the rod with S , the linear density with ρ  and 

the modulus of elasticity or Young's modulus with E . A vibration in a rod is a 

wave. Tension is a reaction force applied by a stretched rod (or a similar object) on 

the objects which stretch it. The direction of the force of tension is parallel to the 

rod, towards the rod. The magnitude of the force of tension has an increasing with 

the amount of stretching. In the case of a small stretching, the force is given by 

Hooke's law. The Hooke's law is given by: 
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x

EtxEtxF
S

tx
∂
Ψ∂=== ),(),(1),( εσ ,        (2.13) 

where the extension (strain) is linearly proportional to its tensile stress, σ  by a 

constant factor, the modulus of elasticity E . Also, one has: 

    
0

0

0

),(1
l

llE
l
lEtxF

S
−=Δ=        (2.14) 

and 

     
xl

ll
∂
Ψ∂=−=

0

0ε .        (2.15) 

Also, we can write for the infinitesimal displacement dx  with dxSdm ρ=  the 

resultant force: 

     Sdx
x

dF
∂
∂= σ

.           (2.16) 

 From the second law of dynamics amF =  one gets: 

    Sdx
xt

dmdF
∂
∂=

∂
Ψ∂= σ
2

2

       (2.17) 

and 

     Sdx
xt

dxS
∂
∂=

∂
Ψ∂ σρ 2

2

    (2.18) 

and it results: 

     
xt ∂

∂=
∂
Ψ∂ σρ 2

2

.        (2.19) 

For the rod one has: 

    
x

EtxEtx
∂
Ψ∂== ),(),( εσ        (2.20) 

and  
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    2

2

2

2

x
E

xt ∂
Ψ∂=

∂
∂=

∂
Ψ∂ σρ        (2.21) 

and it follows: 

     02

2

2

2

=
∂
Ψ∂−

∂
Ψ∂

tEx
ρ

.       (2.22) 

If we compare this relation to the wave equation: 

     0
v
1

2

2

22

2

=
∂
Ψ∂−

∂
Ψ∂

tx
,             (2.23) 

we obtain the speed of a wave traveling (the speed of sound) along a rod: 

     
ρ
E

l =v .         (2.24) 

The speed is directly proportional to the square root of the modulus of 

elasticity E  over the linear density ρ . Thus in steel the speed of sound is 

approximately 5100 m·s-1. 

b) In the case when the length of the solid rod is infinite (boundless) or with lateral 

dimensions much larger than the wavelength the Hooke's law is given by: 

   ε
μμ

μεσ
)21)(1(

)1(),(),( '

−+
−== EtxEtx ,      (2.25) 

where μ  is the Poisson’s coefficient and EE 35,1' ≅  is the plane wave modulus 

and 
)21)(1(

)1(
μμ

μ
−+

−
 is the Poisson's ratio. The speed of the longitudinal waves is 

given by: 

    ll
EE v

)21)(1(
)1(v

'
' >

−+
−==

ρμμ
μ

ρ
.     (2.26) 

The sound velocity is higher than in the first case. 
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2) Transverse Waves 

 

 In the case of the transverse waves the resultant force that is acting upon the 

dm  is perpendicular to the direction of propagation and we have the connection to 

the lateral shear given by: 

     Sdx
x

dF
∂
∂= τ

.               (2.27) 

Shear appears at the cutting of the sheet iron, at the stress of the rivet. Such 

deformations are homogeneous. The second law of dynamics is: 

     Sdx
xt

dm
∂
∂=

∂
Ψ∂ τ
2

2

        (2.28) 

and one gets: 

     
xt ∂
∂=

∂
Ψ∂ τρ 2

2

.        (2.29) 

       
 From the Hooke's law it results: 

     
x

GG
∂
Ψ∂== γτ ,        (2.30) 

where SF /=τ  is the shear stress, G  is the shear modulus or modulus of rigidity 

and γ  is the shear strain. The shear modulus is a quantity used for measuring the 

strength of materials. The shear modulus describes the material's response to 

shearing strains. All of them arise in the generalized Hooke's law. The shear 

modulus influences the value of the speed of sound and also controls it. 

 One gets: 

     2

2

2

2

x
G

t ∂
Ψ∂=

∂
Ψ∂ρ         (2.31) 
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and 

     02

2

2

2

=
∂
Ψ∂−

∂
Ψ∂

tGx
ρ

.       (2.32) 

 

By comparing to the wave equation one obtains: 

     
ρ
G

t =v .         (2.33) 

 We have the connection between the modulus of elasticity E  and the shear 

modulus G : 

     
)1(2 μ+

= EG         (2.34) 

and it follows: 

    lt
EG v

)1(2
v <

+
==

ρμρ
.      (2.35)  

 

In the case when the length of the string (solid rod) is infinite (boundless) or 

with lateral dimensions much larger than the wavelength one gets: 

    1
21

)1(2
v
v'

>
−
−=
μ
μ

l

l .       (2.36) 

 In seismology transverse waves are called S (for “secondary”) waves as they 

arrive later than the P (“primary”) waves from an earthquake. The absence of 

transverse waves traveling through the earth’s core shows that it is liquid.   

Sound will travel slower in denser materials, and faster in "springier" ones. 

Sound will travel faster in aluminium than uranium, and faster in hydrogen than 

nitrogen because of the lower density of the first material of each set. At the same 

time, sound will travel faster in aluminium than hydrogen, as the internal bonds in 
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aluminium are much stronger. Generally solids will have a higher speed of sound 

than liquids or gases. 

 

2.1.3.2 Propagation in a Fluid 
 

In fluids there are only longitudinal waves. The only non-zero stiffness is to 

volumetric deformation (a fluid does not sustain shear forces). 

Hence the speed of sound in a fluid is given by: 

    
ρ

χadiab=v ,     (2.37) 

where adiabχ  is the adiabatic bulk modulus. The bulk modulus K of a fluid or solid 

is the inverse of the compressibility: 

     
V
pVadiab ∂
∂−=χ ,        (2.38) 

where p  is pressure and V  is volume. The bulk modulus thus measures the 

response in pressure due to a change in relative volume, essentially measuring the 

substance's resistance to uniform compression. 

 The speed of sound in water is of interest for mapping the ocean floor. In 

saltwater, sound travels at about 1500 m·s-1 and in freshwater 1435 m·s-1. These 

speeds vary due to pressure, depth, temperature, salinity and other factors. 

    

 
  2.1.3.3 Propagation in Ideal Gases and in Air 
 

In gases there are only longitudinal waves. Newton considered that the 

propagation of sounds in gases is an isothermal one. He considered the speed of 
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sound before most of the development of thermodynamics. He incorrectly used 

isothermal calculations instead of adiabatic. The factor of γ  does not appear in his 

result, which was otherwise correct.  

The Boyle-Mariotte’s law is: 

    .constVp =  , 

    0.)ln(lnln ==+ constVp , 

   
V
p

dV
dp

isot −=)(         (2.39) 

and 

    p
dV
dpV isotisot =−= )(χ ,           (2.40.a)  

the isothermal bulk modulus is equal to the pressure of gas. The speed of sound is 

given by: 

     
ρ
p=v .            (2.40.b)  

 The experiments do not confirm this equation. Laplace made the connection 

between theory and experiments. He considered that the propagation of sounds in 

gases is an adiabatic process. The Poisson law is: 

    .constVp =γ  

   
V

p

V

p

c
c

C
C

==γ          (2.41) 

and 

    0.)ln(lnln ==+ constVp γ , 

   
V
p

dV
dp

adiab γ−=)( , 
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   isotadiab p χγγχ ==         (2.42) 

and we have the speed of sound in ideal gases and air given by: 

    
ρ
γ p=v .         (2.43) 

Using the ideal gas law Clapeyron-Mendeleev: 

   
TR

p
V
mTRmVp μρ

μ
==⇒= ,      (2.44) 

the  speed of sound is identical to: 

    
μ

γ
ρ
γ TRp ==v .       (2.45) 

In the equation above we have R (287.05 J·kg-1·K-1 for air) is the gas 

constant for air: the universal gas constant R, which units of J·mol-1·K-1, is divided 

by the molar mass of air, as is common practice in aerodynamics, μ  is the molar 

mass, γ  is the adiabatic index and T is the absolute temperature in kelvins. 

For an ideal gas, the speed of sound depends on temperature only, not on the 

pressure. We can consider that the air is almost an ideal gas. The temperature of 

the air varies with altitude, this cause the following variations in the speed of sound 

using the standard atmosphere - actual conditions may vary. 

Given normal atmospheric conditions, the temperature, and thus speed of 

sound, varies with altitude*. 
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Altitude Temperature m·s-1 km·h-1 mph

Sea level 15 °C (59 °F) 340 1225 761 

11,000 m–20,000 m 

(Cruising altitude of commercial jets,

and first supersonic flight) 

-57 °C (-70 °F) 295 1062 660 

29,000 m (Flight of X-43A) -48 °C (-53 °F) 301 1083 673 

 

In air a range of different methods exist for the measurement of sound, like 

the single-shot timing methods and Kundt's tube. 
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2.1.4 Energy of Waves. Wave Intensity. 

 
Propagation of waves means propagation of energy. The particles of the 

medium oscillate and we have a propagation of the state of motion in the medium. 

For the longitudinal waves that propagate in a solid rod with the cross 

section S , when the length of the solid rod is finite (a bounded solid rod) or with 

thickness much smaller than the wavelength, if the force that is acting is F  and the 

displacement is )(xΨ , the cross section has the speed: 

    
t∂
Ψ∂='v .         (2.46) 

Also, upon the cross section is acting the elastic force FFel −= . The 

mechanical power is: 

   
t

FF
t

WP
∂
Ψ∂−=−=

∂
∂= 'v)( .       (2.47) 

If the elastic wave (sound) is sinusoidal: 

   )sin( xktA −=Ψ ω ,        (2.48) 

one has: 

    )cos('v xktA
t

−=
∂
Ψ∂= ωω        (2.49) 

and from the Hooke's law it follows: 

     εσ E
S
F ==                  (2.50) 

and 

   )cos( xktkASE
x

ESESF −−=
∂
Ψ∂== ωε .     (2.51) 

 The mechanical power is: 
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   )(cos22 xktAkSE
t

WP −=
∂
∂= ωω .      (2.52) 

 With the equations: 

    
ρ
E=v ,      E=2vρ         (2.53) 

and  

    
v
ω=k ,                  (2.54) 

the power becomes: 

  )(cos
v

v 22
2

2 xktAS
t

WP −=
∂
∂= ωωρ                       (2.55) 

and 

  )(cosv 222 xktAS
t

WP −=
∂
∂= ωωρ .       (2.56) 

 From (2.56) it follows that even the power is time dependent it has always 

positive values because of )(cos2 xkt −ω  that has positive values. The power 

depends on xkt −ω , so it corresponds to a wave of energy. 

 We have the time medium value of the power: 

  
.v

2
1)(cosv1

1)(

22

0

222

0

ASdtxktAS
T

dt
t

W
Tt

WP

T

T

med

ωρωωρ =∫ −=

∫ =
∂
∂=

∂
∂=

       (2.57) 

 For solid rod the product Sv  is the volume where the waves have 

propagated per unit time. We define the quantity: 

     22

2
1 Aw ωρ= ,        (2.58) 



 74

that is the energy density of waves or wave energy density and one has: 

     2222 Aw νρπ=         (2.59) 

and it follows: 

     wSP v= .         (2.60) 

Energy density of waves is the amount of energy of waves stored in a given system 

or region of space per unit volume. 

 From (2.60) it results that the energy density of waves is proportional to the 

square of amplitude, the square of frequency and the linear density. 

 The sound energy density or sound density describes the sound field at a 

given point as a sound energy value. The sound energy density describes the time 

medium value of the sound energy per volume unit; it gives information about the 

sound energy which is at a defined place of room. The sound energy density is 

given in J/m3. For sounds in air we have 35 /105,2 mJw −⋅= . 

 The wave intensity, I , is defined as the wave power P  per unit area: 

 

    22v
2
11 AP

S
I ωρ== .                 (2.61) 

 
 Because the maximum of speed is Aω='

maxv  one gets: 

 

     2'
maxvv

2
1 ρ=I .        (2.62) 

 
 From (2.62) it results that the wave intensity is proportional to the wave 

energy density and the wave velocity. For sounds in air we have 
2335 /105,8/340/105,2 mWsmmJI −− ⋅=⋅⋅= . 
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 Some Applications of the Waves*:  

 
 The terms of wave power refers to the energy of ocean surface waves and 

the capture of that energy to do useful work - this includes electricity generation, 

desalination, and the pumping of water (into reservoirs). 

Wave power can be considered a form of renewable energy and it is 

different than the diurnal flux of tidal power and the steady gyre of ocean currents. 

Large waves are more powerful and the wave power is determined by wave 

height, wave speed, wavelength, and water density. 

Wave size is determined by wind speed and fetch and by the depth and 

topography of the seafloor. For a given wind speed there is a practical limit over 

which time or distance will not produce larger waves. This limit is called a "fully 

developed sea." 

Wave motion is highest at the surface and increases exponentially with 

depth. Wave energy is also present as pressure waves in deeper water. For a set of 

waves the potential energy is proportional to wave height squared times wave 

period (the time between wave crests). Because longer period waves have 

relatively longer wavelengths they move faster. The potential energy is equal to the 

kinetic energy. Wave power is expressed in kilowatts per meter. 
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Fig. 1.30 
 

Pelamis machine pointing into the waves: it attenuates the waves, gathering 

more energy than its narrow profile suggests* 

 
The Pelamis Wave Energy Converter represents an emerging technology that 

will use the motion of ocean waves for producing electricity. The first "wave 

farm" was planned for 2006 off the coast of Portugal. The wave farms used 3 

Pelamis P-750 machines, each of them being capable of producing 750 

kilowatts, and each farm producing 2.25 megawatts.  
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2.2 Wave Interference 
 

 Interference is a phenomenon that consists in the superposition of two or 

more waves resulting in a new wave pattern. 

In order to have interference of waves these must be correlated or coherent 

with each other, either because they have the same source or because they have the 

same or nearly the same frequency. Two non-monochromatic waves are coherent 

with each other if they both have the same wavelength (the same frequency) and 

the same phase differences at each of the constituent wavelengths. Many waves do 

not obey to these conditions, so it is necessary to make them coherent with each 

other for having interference. 

 Important is the principle of superposition of waves: the resultant 

displacement at a point is equal to the sum of the displacements of different waves 

at that point. 

There are two important cases of interference: constructive interference and 

destructive interference. Constructive interference: superposition of two crests 

belonging to different waves at the same point with the increasing of the resultant 

wave amplitude. Destructive interference: superposition of two crests belonging to 

different waves at the same point with the decreasing of the resultant wave 

amplitude. 
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Fig. 1.31 
 

Interference of two circular waves* 

 

Examples of interference: interference of sounds, interference of surface 

waves on the water, interference of gravitational waves, and interference of light. 

Examples of interferences of light: light from any source can be used to 

obtain interference patterns, Thomas Young's double-slit experiment, and 

Newton’s rings that can be produced with sunlight. 

About the white light, we notice that it is not so suitable for producing clear 

interference patterns, because is a mix of colours, that each has different spacing of 

the interference fringes. An example of light close to monochromatic is the sodium 

light. This is more suitable for obtaining interference patterns. The laser light 

exhibits the same property, and is almost perfectly monochromatic. 

In the case of the interference of two waves, the resulting waveform depends 

on the frequency (or wavelength) amplitude and relative phase of the two waves. If 

we have two waves of the same amplitude A  and wavelength the resultant 

waveform will have amplitude between 0 and A2 . The first case corresponds to 

two waves that are in phase, and the second case describes two waves that are out 
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of phase. In the figure below are presented two waves in phase and two waves 180° 

out of phase. 

 

 
 

Fig. 1.32 
 

Two waves in phase and two waves 180° out 

of phase* 

 
If these two waves are in phase, and have the amplitudes 1A  and 2A , then 

their troughs and peaks line up and the resultant wave has the amplitude 

21 AAA += . This is an example of constructive interference. 

If the two waves are 180° out of phase, then one wave's crests will coincide 

with another wave's troughs, and they will tend to cancel out each other. The 

resultant amplitude is 21 AAA −= . For equal amplitudes 21 AA =  the resultant 

amplitude will be zero. This is an example of destructive interference. 

 *Thomas Young's double-slit experiment (Fig. 1.33) is based on the 

phenomenon of interference, the case of two beams of light which are coherent 

with each and produce an interference pattern (the beams of light have the same 

wavelength range and both come from the same source). Two or more sources can 

produce interference when there is a fixed phase relation between them, but in the 

case of this experiment the interference generated is the same as with a single 

source. 
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The light diffracted through two slits produces fringes on a screen. These 

fringes present light and dark regions that correspond to constructive and 

destructive interference. The experiment can be realized with a beam of electrons 

or atoms, and in this case similar interference patterns can be obtained; this is an 

evidence of the "wave-particle duality" predicted by quantum physics. Also, a 

double-slit experiment can be performed with water waves in a ripple tank; for the 

explanation of the interference there is no need of quantum mechanics. The 

phenomenon is quantum mechanical only when quantum particles - such as atoms, 

electrons, or photons - manifest as waves. The condition for obtaining an 

interference pattern in a double-slit experiment concerns the difference in path 

length between two paths that light can take to reach a zone of constructive 

interference on the viewing screen. This difference has to be equal to the 

wavelength of the light, or a multiple of this wavelength. 

 

Fig. 1.33* 
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In Young's original experiment, Sunlight passes first through a single slit, 

and then through two thin vertical slits in otherwise solid barriers, and the 

interference pattern is viewed on a rear screen. 

When either slit is covered, a single peak can be observed on the screen, and 

is caused by the light passing through the other slit. For both slits open 

simultaneously, a pattern of light and dark fringes is observed. 

This pattern of fringes contains constructive interference and destructive 

interference.  The brighter spots are connected to constructive interference, where 

two peaks in the light wave coincide as they reach the screen. The darker spots are 

connected to destructive interference that occurs where a peak and a trough occur 

together. In the figure below we have intensity represented versus position. 

 
 

Fig. 1.34 
 

Interference* 

 

One has: 

D
x

s
=λ

         (2.63)  

where : 

λ  is the wavelength of the light , 

s  is the separation of the slits, 

x is the distance between the bands of light (fringe distance), 

D  is the distance from the slits to the screen. 
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 The interference fringes observed in Young's double slit experiment have 

shapes that are straight lines. 

 In the original Young's experiment instead of slits are used two pinholes, and 

hyperbolic fringes are observed.  

 In the case when the two sources are placed on a line perpendicular to the 

screen, the shape of the interference fringes is circular as the individual paths 

travelled by light from the two sources are always equal for a given fringe. This 

can be obtained by placing a mirror parallel to a screen at a distance and using a 

source of light that is placed just above the mirror. 

 

2.2.1 Theoretical Demonstration of Interference 

 

 We consider waves which are correlated or coherent with each other, either 

because they come from the same source or because they have the same or nearly 

the same frequency. The condition of coherence for two non-monochromatic 

waves is respected only if they both have exactly the same range of wavelengths 

(the same frequency) and the same phase differences at each of the constituent 

wavelengths. 

 We have two sinusoidal waves as in the figure below described by: 
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−=Ψ

−=Ψ
       (2.64) 

 We consider that the initial phases vanish. The point M  is far away from 

the sources 1S  and 2S  (Fig. 1.35) and the waves have the same of propagation. 
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Fig. 1.35 

 

 We denote 
1

1
1 r

Aa =  and 
2

2
2 r

Aa =  and we make the approximation 

aaa =≅ 21  and we obtain for the resultant wave: 

  )
2

(2sincos2 2112
21 λ

π
λ

π rr
T
trra +−−=Ψ+Ψ=Ψ .     (2.65) 

The equation 

     .21 constrr =+         (2.66) 

represents the locus of equal phase points (equi-phase surface) which is the 

equation of a family of ellipsoids revolving around the line 21SS  having the two 

focuses in the points where the sources 1S  and 2S  are placed. 

The surface given by the equation:  

     .12 constrr =−         (2.67) 

is the place of the space points which have the resultant amplitude 

λ
π 12cos2 rra −

 constant. 

Ψ2 

Ψ1 

r2 

r1 

M 

Fig. 4
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This relation is the equation of a family of revolving hyperboloids around 

the axis 21SS  having the two focuses in the points where the sources 1S  and 2S  are 

placed. 

The resulting amplitude corresponds to a maximum when the displacement 

is a multiple of wave lengths or an even multiple of half-wave lengths: 

   λλ mmrr ==−
2

212 ,                 (2.68) 

 with ( ,...)2,1,0=m . 

The resulting amplitude corresponds to a minimum when the displacement is 

a multiple of wave lengths or an odd multiple of half-wave lengths: 

   
2

)12(12
λ+=− mrr ,                        (2.69) 

with ( ,...)2,1,0=m . 

 The interference phenomenon (waves which are correlated or coherent with 

each other) is easy to observe in the case of the surface waves made by water when 

two small stones are thrown simultaneously at a certain distance one from other. 

Other examples of interference are the cases of the water waves emitted by the tips 

of two elastic blades that touch the water surface at the same time, the sound waves 

emitted by two diffusers controlled by the same sound oscillator or light emitted by 

the currents of the margins of two slits that are lighted by a linear point like source. 

 

2.2.2 Doppler Effect 

 

The Doppler effect, discovered by Christian Andreas Doppler, and is 

observed when the source of waves is moving with respect to an observer.  The 
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Doppler effect consists in an apparent change in frequency or wavelength of a 

wave that is perceived by an observer moving relative to the source of the waves.  

In the case of sound waves that propagate in a wave medium the velocity of 

the observer and the source are considered relative to the medium in which the 

waves propagate. The total Doppler effect is the result of either motion of the 

source or motion of the observer. The study of these effects can be realized 

separately. For light or gravity (waves which do not require a medium for 

propagation) in special relativity only the relative difference in velocity between 

the observer and the source is needed for the study of the effect. 

The frequency of the sounds emitted by the source does not actually change. 

For pointing out the Doppler effect we consider an analogy. A ball is thrown every 

second in an observer's direction. The velocity of the balls is constant. If the 

thrower is stationary, the observer will receive one ball every second. In the case 

when the thrower is moving towards the observer, he will receive balls more 

frequently because the balls will be less spaced out. This is also available if the 

thrower is moving away from the observer. The wavelength will be affected, and  a 

consequence is that the perceived frequency is also affected. 

 

Applications of Doppler Effect*:  

 
1) The Doppler effect for electromagnetic waves such as light has 

applications in astronomy, and is connected to either a redshift or blueshift. In 

physics and astronomy, Redshift represents an observed increase in the wavelength 

(decrease in the frequency) of electromagnetic radiation that is received by a 

detector compared to that emitted by the source. In the case of visible light the 

longest wavelength is for res, so colors experiencing redshift shift towards the red 

part of the electromagnetic spectrum. The phenomenon also occurs at non-optical 
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wavelengths (longer-wavelength radiation "redshifts" away from red). In the case 

of shorter wavelengths the corresponding shift is called blueshift. It has been used 

for the evaluation of the speed (radial velocity) at which stars and galaxies are 

approaching to, or receding from us. This is used to detect a single star is, in fact, a 

close binary (a binary star system consists of two stars both orbiting around their 

center of mass) and even to measure the speed of rotation of stars and galaxies. 

 

 
 

Fig. 1.36 
 

A binary star system consisting of a black hole, with an accretion disc around it, 

and a main sequence star* 

 

 An accretion disk is a structure that is formed by material falling into a 

gravitational source. Accretion disks are phenomenon in astrophysics; active 

galactic nuclei, protoplanetary discs, and gamma ray bursts. 

The Doppler effect for light is used in astronomy because the spectra of stars 

are not continuous. This implies the existence of absorption lines at well defined 

frequencies that are correlated with the energies required to excite electrons in 

various elements from one level to another. A characteristic of the Doppler effect is 

that the absorption lines are not always at the frequencies obtained from the 
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spectrum of a stationary light source. Blue light has a lower wavelength than red 

light, and the spectral lines from an approaching astronomical light source show a 

blueshift and those of receding sources show a redshift. 

2) Another application of the Doppler effect in astronomy is temperature 

measurement for a gas which is emitting a spectral line The thermal motion of the 

gas, determines that each emitter can be slightly red or blue shifted, and the net 

effect is a broadening of the line. The line shape is called a Doppler profile and its 

width is proportional to the square root of the temperature of the gas. This allows 

the use of the Doppler-broadened line for measuring the temperature of the 

emitting gas. 

3) The Doppler effect can be used in some forms of radar to measure the velocity 

of detected objects. A radar beam is fired at a moving target (a car) as it recedes 

from the radar source. For being reflected by the car and re-detected near the 

source each wave has to travel further to reach the car. There will be an increasing 

of the gap between each wave, and this will imply an increasing of the wavelength. 

The radar beam is fired at a moving car that approaches, and in this case the 

successive wave travels a decreased distance, and this determines the decreasing of 

the wavelength. The car's velocity can be determined with the Doppler effect. 

4) The laser Doppler velocimeter (LDV), and Acoustic Doppler Velocimeter 

(ADV) are used to measure velocities in a fluid flow. The LDV and ADV emit a 

light or acoustic beam, and allow the evaluation of the Doppler shift in 

wavelengths of reflections from particles moving with the flow. This technique is 

used for flow measurements, at high precision and high frequency. 
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2.3 Sounds 
 

2.3.1 Sound Intensity 

 
The sound represents the propagation of the vibrational mechanical energy 

through matter in a form of a wave. Hearing is possible between frequencies about 

20 Hz and 20000 Hz, with the upper limit generally decreasing with age, in the 

case of humans. The propagation of mechanical vibrations takes place through 

gases, liquids, solids, and plasmas. Through solids the propagation is made as both 

like longitudinal and transverse waves (shear waves) and through gases, liquids 

and plasma as longitudinal waves (compression waves). 

The sound intensity, I , (acoustic intensity) is defined as the sound power P  

per unit area S . The SI units are W/m2. 

The sound intensity (of a plane progressive wave) is given by: 

     P
S

I 1= .                    (2.70) 

For a spherical sound source, the intensity as a function of distance r  is: 

    24 r
PI
π

= .               (2.71) 

 From (2.62) and (2.70) it results that the sound intensity is proportional to 

the wave energy density and the wave velocity. For sounds in air we have 
2335 /105,8/340/105,2 mWsmmJI −− ⋅=⋅⋅= . 

The amplitude of sound intensity decreases in the free field (direct field) with 2

1
r

 

of the distance of a point source. Sound intensity level or acoustic intensity level is 
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a logarithmic measure of the sound intensity in comparison to the reference level 

of 0 dB (decibels). 

    )(lg10
0

dB
I
IL = ,             (2.72) 

where 212
0 /10 mWI −=  (at kHz1=ν ) is the reference intensity. Also, we can 

write for the sound intensity leve:l 

     )(lg
0

B
I
IL = ,              (2.73) 

with B  from Bell or 

     )(ln
0

Np
I
IL = ,       (2.74) 

with Np  from Neper. 

Sound intensity is different from sound pressure. Hearing is sensitive to sound 

pressure which is connected to sound intensity.  

 Sound pressure is the local pressure deviation from the average pressure 

determined by a sound wave. Measurements of sound pressure can be made using a 

microphone in air and a hydrophone in water. The SI unit for sound pressure is the 

pascal (symbol: Pa). A microphone is an acoustic to electric transducer that 

converts sound into an electrical signal. Microphones are used in many 

applications: telephones, tape recorders, hearing aids, motion picture production, 

live and recorded audio engineering, in radio and television broadcasting and in 

computers for recording voice, VoIP (Voice over Internet Protocol) and numerous 

other computer applications. A hydrophone is a sound-to-electricity transducer for 

use in water or other liquids, and represents the analogous to a microphone for air. 

Hydrophones are an important part of the SONAR (SOund Navigation And 

Ranging) that is a technique based on the use of sound propagation under water to 
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navigate or to detect other vessels system. Also, geologists and geophysicists use 

the hydrophones for detecting seismic energy. They are combined to form 

streamers that are towed by seismic vessels or deployed in a borehole (is a deep 

and narrow shaft in the ground used for abstraction of fluid or gas reserves below 

the earth's surface. In the case when the fluid reserve is under pressure (oil or gas) 

then little extra machinery is required. For water is used a special submersible 

pump to pump water up the rising main.  

 Sound pressure level (SPL) is given by: 

   )(lg20)(lg10
00

dB
p
pdB

I
IL

s

s== ,             (2.75) 

where 25
0 /102 mNps

−⋅≅  is the reference sound pressure which corresponds to 

212
0 /10 mWI −= . This expression is used for sound pressure when dealing with 

hearing, as the perceived loudness of a sound is connected roughly logarithmically 

to its sound pressure.  

 The Weber–Fechner law yields the relationship between the physical 

magnitudes of stimuli and the perceived intensity of the stimuli. The Weber–

Fechner law is given by: 

     
0

0 lg
I
IkSS =− ,              (2.76) 

where k  represents a constant factor that can be determined experimentally, S  is 

the stimulus at the instant and 0S is the threshold of stimulus below which it is not 

perceived at all. 

When making measurements in air (and other gases), SPL is almost always 

expressed in decibels compared to a reference sound pressure of 20 µPa 

(micropascals), which is usually considered the threshold of human hearing 
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(roughly the sound of a mosquito flying 3 metres away). Most measurements of 

audio equipment can be made relative to this level. In other media (underwater) a 

reference level of 1 µPa is used. About the threshold of human hearing, it is the 

sound pressure level SPL of 20 µPa (micropascals) = 2 × 10−5 pascal (Pa). This low 

threshold of amplitude (strength or sound pressure level) has a dependence on 

frequency. See the frequency curve in the figure bellow 

 

 
 

Fig. 1.37 
 

Thresholds of hearing for male (M) and female (W) subjects between the ages of 

20 and 60* 

 

 The absolute threshold of hearing (ATH) represents the minimum amplitude  

of a pure tone that can be heard by the average ear with normal hearing in a 

noiseless environment. 
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The threshold of pain is the SPL beyond which sound becomes unbearable 

for a human listener. This threshold has a dependence on frequency. We give some 

values for the threshold of pain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The threshold of hearing is frequency dependent, and has a minimum (indicating 

the ear's maximum sensitivity) at frequencies between 1 kHz and 5 kHz. The 

lowest curve amongst the set of equal-loudness contours represents the absolute 

threshold of hearing, and the highest curve represents the threshold of pain. 

Together with masking curves the ATH is used in psychoacoustic audio 

compression for evaluating which spectral components are inaudible and may thus 

Threshold of pain 

SPL sound pressure

120 dBSPL 20 Pa 

130 dBSPL 63 Pa 

134 dBSPL 100 Pa 

137.5 dBSPL 150 Pa 

140 dBSPL 200 Pa 
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be ignored in the coding process. The part of an audio spectrum which has an 

amplitude (level or strength) below the ATH may be removed from an audio signal 

without changing the signal. Because of the age (the human ear becomes more 

insensitive to sound) the ATH curve rises and presents the greatest changes 

occurring at frequencies higher than 2 kHz. 

 

 
 

Fig. 1.38 
 

The Fletcher-Munson equal-loudness contours. The lowest of the curves is the 

ATH* 

 
Some examples of sound pressure levels are given in the table 
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situation sound pressure level dBSPL 

threshold of pain 130 

hearing damage during short term effect from 120 

jet, 100 m distant 110–140 

jack hammer, 1 m distant / discotheque approx. 100 

hearing damage during long-term effect approx. 90 

major road, 10 m distant 80–90 

passenger car, 10 m distant 60–80 

TVset at home level, 1 m distant approx. 60 

normal talking, 1 m distant 40–60 

very calm room 20–30 

leaves noise, calm breathing 10 
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2.3.2 Ultrasounds 
 

Ultrasound is sound with a frequency greater than the upper limit of human 

hearing, with a limit at approximately 20 kilohertz (20,000 hertz). Ultrasounds also 

represent propagation of acoustic energy in the form of waves. Some animals are 

able to hear ultrasound (dogs, dolphins, bats, and mice) because they have an upper 

limit that is greater than that of the human ear. Children can hear some high-

pitched sounds that older adults are not able to hear because in humans the upper 

limit pitch of hearing gets lower with the increasing of age. The middle ear that 

acts as a low-pass filter is responsible of the frequency limit. In the case when 

ultrasound is coupled directly into the skull bone and reaches the cochlea and don’t 

pass through the middle-ear, it is possible to hear sounds with frequencies up to 

about 200 kHz. This effect (ultrasonic hearing) was first discovered by divers 

exposed to a high-frequency (50 kHz) sonar signal. 

Applications of ultrasounds: 

1) Ultrasounds are used in medical ultrasonography (sonography) that is an 

ultrasound-based diagnostic imaging technique. Sonography is used to visualize 

muscles and internal organs, and to study their size, structure and any pathological 

lesions. During pregnancy obstetric sonography is used for monitorizing the baby. 

Ultrasound also has therapeutic applications: 

2) Ultrasounds are used for treating benign and malignant tumors and other 

disorders, via a process called Focused Ultrasound Surgery (FUS) or HIFU, High 

Intensity Focused Ultrasound. Lower frequencies than medical diagnostic 

ultrasound (from 250 kHz to 2000 kHz) are used coupled with significantly higher 

time-averaged intensities. The treatment is often guided by MRI, as in Magnetic 

Resonance guided Focused Ultrasound. 
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3) For cleaning the teeth in dental hygiene or generate local heating in 

biological tissue (physical therapy and cancer treatment) can be used more 

powerful ultrasound sources.  

4) Focused ultrasound sources are suitable for cataract treatment by 

phacoemulsification. 

5) Low-intensity ultrasounds are used for producing stimulation of bone-

growth and to disrupt the blood-brain barrier for drug delivery. 

6) Ultrasound-assisted lipectomy UAL or liposuction is based on the use of 

ultrasound. 

7) Ultrasounds have also industrial applications they are used in industry for 

locating flaws in materials. Most common are ultrasounds with frequencies of 2 to 

10 MHz but for special purposes other frequencies can be used. It is possible to 

inspect most of the metals, plastics and aerospace composites. 

8) Ultrasonic cleaners are based on ultrasounds of frequencies from 20-40 

kHz and used for jewellery, lenses and other optical parts, watches, dental 

instruments, surgical instruments and industrial parts. 

9) Some sorts of ultrasound allow the disintegration of biological cells 

including bacteria. This is used in biological science and in killing bacteria in 

sewage (subset of wastewater that is contaminated with faeces or urine, but is often 

used to mean any waste water). Sewage includes domestic, municipal, or industrial 

liquid waste products disposed of, usually via a pipe or sewer or similar structure. 

11) Ultrasounds have applications in sonar systems to determine the depth of 

the water in a place, to find fishs, to locate submarines, and to detect the presence 

of SCUBA divers. 

10) Ultrasounds are used in ultrasonic intrusion detection system. 
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Chapter 3. 

 
Fluids 

 
3.1.1 Fluids Properties. 
 

Fluid statics (hydrostatics) is the science of fluids at rest. Fluids exhibit the 

properties of not resisting deformation and the ability to flow. These properties are 

connected to their inability to support a shear stress in static equilibrium. In a fluid 

stress is a function of rate of strain. Pascal's law is a consequence of this behavior 

and points out the role of pressure in characterizing a fluid's state. Fluid 

hydrodynamics studies the fluids in motion.  

Fluids can be characterized as: 

- newtonian fluid is the fluid that exhibits properties of flowing like water, its shear 

stress is linearly proportional to the velocity gradient in the direction perpendicular 

to the plane of shear. The constant of proportionality is the viscosity. 

- non-newtonian fluid is a fluid that presents a change in the viscosity with the 

applied strain rate. Because of this a non-Newtonian fluids does not have a well-

defined viscosity. 

 Buoyancy is an upward force that acts on an object immersed in a fluid (a 

liquid or a gas), allowing it to float or at least to appear lighter. Buoyancy is 

important for many vehicles such as boats, ships, balloons, and airships. 

 Buoyancy provides an upward force on the body. According to Newton's 

first law of motion, if the upward forces (including the buoyancy) balance the 
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downward forces (including the weight) the object will either remain at rest or 

remain in motion at a constant rate. Otherwise, it will accelerate upwards or 

downwards. 

 In the case when an object's compressibility has a value less than that of the 

surrounding fluid, the object is in stable equilibrium and will remain at rest. If its 

compressibility is greater, its equilibrium is unstable, and the object will rise and 

expand on the slightest upward perturbation or fall and compress on the slightest 

downward perturbation. The condition needed for an object to float is to be able to 

displace enough water equal to its weight. 

 The law of buoyancy given by Archimede, also called Archimede’s law is: 

the buoyant force is equal to the weight of the displaced fluid. The weight of the 

displaced fluid is directly proportional to the volume of the displaced fluid. In the 

case of more objects with equal masses, the greater buoyancy corresponds to the 

object with greater volume.   

 An homogeneous fluid is described by its density that is defined as ratio 

between mass m  and volume V , )/( 3mkg
V
m=ρ . For a non-homogeneous 

fluid the equation above describes only the average density. It is necessary to 

define the density of a given point, in an infinitesimal volume dV  with the mass 

dm . We get 
dV
dm=ρ  . Generally, the density is given by 

),(),,,( tryzyx rρρρ == . The function ),( trrρ  describes a density field which 

is a scalar field. The highest density known is reached in neutron star matter. We 

give some values of densities of various substances: 
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Substance Density in kg·m-3 Tin 7310

Iridium 22650 Titanium 4507

Osmium 22610 Diamond 3500

Platinum 21450 Basalt 3000

Gold 19300   

Tungsten 19250 Granite 2700

Uranium 19050   

Mercury 13580 Aluminium 2700

  Graphite 2200

Palladium 12023   

Lead 11340 Magnesium 1740

Silver 10490 PVC 1300

Copper 8960   

Iron 7870 Seawater 1025

Steel 7850 Water 1000

Ice 917 Ice 917

Polyethylene 910 Ethyl alcohol 790

Gasoline 730 Liquid Hydrogen 68 

  Aerogel 3 

 

The forces that act upon a fluid are internal forces and external forces. External 

forces can be surface forces (from an external body) or volume forces (act upon the 

whole volume of the fluid: the action of the gravitational field upon a fluid, the 

action of the electromagnetic field upon a fluid). Internal forces are forces that 
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appear because of the interaction between the infinitesimal volumes of the fluid.  

Also, they can be surface forces and volume forces.   

A liquid is one of the four main phases of matter. It is a fluid with a shape 

determined by the container it fills. Under conditions of constant temperature and 

pressure its volume is fixed. The pressure exerted by the liquids on the sides of a 

container is transmitted undiminished in all directions and increases with depth. 

 The fluid mechanics has two parts, fluid dynamics and fluid statics 

depending on whether the fluid is in motion or not. 

 

3.1.2 Fluids Pressure. 

 
Pressure p  is the force per unit area that acts on a surface in a direction 

perpendicular to that surface. It is given by: 

     
S
Fp = ,       (3.1) 

where F  is the normal force and S  is the area of the surface. This equation is 

available when the force is the same in every point of the fluid. When the force has 

different values in different points of the fluid the pressure is given by: 

      
dS
dFp = ,                                            (3.2) 

where dF  is also the normal force and the surface can be represented by a vector 

dSnSd rr
= , where nr   is the unit (surface normal) vector of the orthogonal 

direction to dS . 

 If the pressure has different values in different points of the fluid we have 

),(),,,( trptzyxpp r== . The function ),( trp r
 describes a pressure field which 

is a scalar field. 
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 If the fluid is moving we need a velocity fields to describe it. The velocity of 

the fluid is given by ),(v),,,(vv tryzyx rrrr == . The function ),(v trrr
 describes a 

velocity field which is a vector field. 

 The unit for pressure in SI is pascal Pa  , 2/ mNPa = . Other unit for 

pressure is the standard atmosphere atm  which is given by, 
255 /1001325.11001325.11 mNPaatm ⋅=⋅= . In the table bellow we present 

the pressure units*. 

 

Pressure Units 

  

 

Pascal 

(Pa) 

 

Bar 

(bar) 

Technical 

atmosphere

(at) 

 

Atmosphere

(atm) 

 

Torr 

(mmHg) 

Pound per

square inch

(psi) 

1 Pa 
≡ 1 

N/m² 
10−5 10.197×10−6 9.8692×10−6 7.5006×10−3 145.04×10−6

1 bar 100 000 
≡ 106 

dyn/cm² 
1.0197 0.98692 750.06 14.504 

1 at 98 066.5 0.980665 ≡ 1 kgf/cm² 0.96784 735.56 14.223 

1 atm 101 325 1.01325 1.0332 
≡ 101 325 

Pa 
760 14.696 
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1 

Torr 
133.322 1.3332×10−3 1.3595×10−3 1.3158×10−3 ≡ 1 mmHg 19.337×10−3

1 psi 6 894.76 68.948×10−3 70.307×10−3 68.046×10−3 51.715 ≡ 1 lbf/in² 

 
Pressure is measured by its ability to displace a column of liquid in a manometer, 

and often expressed as a depth of a particular fluid. The most used choices are 

mercury (Hg) and water. Water has the properties of no toxicity and readily 

availability, and mercury's density gives the possibility to use a shorter column (a 

smaller manometer) to measure a given pressure. 

 

 3.1.3 Fluid Statics. Hydrostatic Pressure. 
 

Fluid pressure is the pressure on an object submerged in a fluid, such as 

water. The concept of fluid pressure is associated to the discoveries of Blaise 

Pascal and Daniel Bernoulli. 

The fundamental law of the fluid statics (in the case when upon the fluid are 

acting only gravitational forces) is given by: 

     pg ∇=
ρ
1r

,                 (3.3) 

 If upon the fluid also act other external volume forces and the resultant force 

is f
r

, the fundamental law of the fluid statics becomes: 

     pf ∇=
ρ
1r

.                 (3.4) 
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This is a differential equation with first order partial derivatives and if we integrate 

it we obtain the pressure field ),,( zyxpp = . The solution is completely known if 

there are given the boundary condition for the fluid and the laws of dependence on 

position for f
r

 and ρ . 

 The hydrostatic pressure is an important application of the fundamental law 

of the fluid statics for an incompressible fluid. For ),0,0( ggg −= rr
 from the 

fundamental law of the fluid statics (3.3) it follows: 

     g
z
p

y
p

x
p ρ−=

∂
∂=

∂
∂=

∂
∂ ,0,0 .     (3.5) 

The pressure does not depend on the coordinates x  and y  and is a function on z  

coordinate and one has: 

     dzgdp ρ−= .                (3.6) 

 In the case where the fluid is at rest, the force acting on the object is the 

sheer weight of the fluid above, up to the water's surface-such as from a water 

tower. The resulting hydrostatic pressure (static pressure) is isotropic: the pressure 

acts in all directions equally, according to Pascal's law: 

     hgp ρ= ,                 (3.7) 

where ρ  is the density of the fluid, g  is the acceleration due to gravity (practical 

value 9.8 m/s2 ) and h  is the height of the fluid column 

( 1212 ,0, zzhppp −=== ). Pascal's law on gives the fluid pressure at 

mechanical equilibrium. Also, according to the Pascal's law we have the difference 

of pressure between two different heights 1h  and 2h  given by: 

    )( 2112 hhgppp −=−=Δ ρ ,               (3.8) 

where 1h  and 2h  are elevations. The elevation of a geographic location is given by 

its height above a fixed reference point that is in many cases the mean sea level. If 
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we have a fluid in a receptacle and  1h  and 2h  are the depths of two points A  and 

B  the equation (3.8) gives the difference of hydrostatic pressure between these 

two points. The hydrostatic pressure does not depend on the shape of receptacle, 

only depends on the depth. Also, from (3.8) it follows: 

     )( 2112 hhgpp −+= ρ .       (3.9) 

If the external volume force field which acts upon the fluid is a conservative field 

(gravitational field) we have UF −∇=
r

 and (3.4) becomes: 

    V
m
UU

mm
Ff −∇=−∇=∇−== )(1
r

r
,                  (3.10) 

where mUV /=   is the potential of the external field. From (3.4) and (3.10) we 

obtain: 

     0)(1 =+∇=∇+∇ VpVp
ρρ

   (3.11) 

and one gets: 

      .constVp =+
ρ

             (3.12) 

From (3.12) it results that the surfaces of the same pressure are also surfaces of the 

same potential (equipotential surfaces). In the case from above the equipotential 

surfaces are horizontal planes.  
 

Applications of Hydrostatic Pressure* 

 

- The pressure under water increases with depth, and this is well known to scuba 

divers. At a depth of 10 m under water, pressure has a double value than the 

atmospheric pressure at sea level, and increases by 100 kPa for every extra 10 m of 

depth. 



 105

- Any change in pressure applied at any given point on a confined and 

incompressible fluid is transmitted undiminished throughout the fluid. 

- Atmospheric pressure has a decreasing with height, and this was first verified on 

the Puy-de-Dôme and the Saint-Jacques Tower in Paris by Blaise Pascal. As the 

atmosphere becomes lighter with height, the atmospheric pressure has an 

exponentially dependence on height. This is expressed with the barometric 

formula. 

- Artesian wells, water towers, dams. 

- Pascal's barrel experiment: in this experiment the main part was a long and 

narrow vertical pipe connected to the content of a large barrel. Putting water into 

the pipe (even in small quantity), the height of the fluid within the pipe will sharply 

increase, and the break of the barrel can be induced. 

- Pascal's principle underlies the Hydraulic press. 

 

 3.1.4 Fluid Dynamics. 
 

 Fluid dynamics studies fluids (liquids and gases) that are in motion. 

Also, fluid dynamics yields a mathematical structure that embraces empirical 

and semi-empirical laws, derived from flow measurement, used to solve practical 

problems. The solution of a fluid dynamics problem typically involves carry-on 

calculations for various properties of the fluid, such as velocity, pressure, density, 

and temperature, as functions of space and time. 

The fluid flow can be compressible flow and incompressible flow. In the case 

of the compressible flow the density of the flow cannot be assumed to be constant. 

The incompressible flow describes a fluid flow in which changes in the fluid 

density have little effect on the variables of interest, such as the lift (consists of the 
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sum of all the fluid dynamic forces on a body perpendicular to the direction of the 

external flow approaching that body) on a wing. 

 

3.1.4.1 The Continuity Equation 

 

The volumetric flow rate or volume flow rate is given by: 

    )/( 3 sm
dt
dVQV = .             (3.13) 

The mass flow rate is given by: 

    )/( skg
dt
dmQm = .             (3.14) 

The connection between (3.13) and (3.14) is: 

    Vm Q
dt
dVQ ρρ == .             (3.15) 

One of the fundamental equations of fluids flow is the continuity equation 

which expresses the law of conservation of matter. We consider a fluid in motion, 

with volume V  and the closed surface S  around it. The mass of fluid in this 

volume is: 

    ∫=
)(V

dVm ρ ,              (3.16) 

with ),( trrρρ =  the density of the fluid. From (3.16) one has: 

    ∫ ∂
∂−=∫∂

∂−=
∂
∂

)()( VV
dV

t
dV

tt
m ρρ .            (3.17) 

On the other hand we have the volume dSm vρ=  or, generally, Sdm
rr ⋅= vρ . 

The variation of the mass of the fluid in time unit from the whole closed surface S  

is given by: 
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     ∫ ⋅=
∂
∂

)(
v

S
Sd

t
m rrρ .              (3.18) 

  From (3.17) and (3.18) one obtains: 

    ∫ ⋅=∫ ∂
∂−

)()(
v

SV
SddV

t
rrρρ

.             (3.19) 

Using the Stokes theorem one gets: 

    ∫ ⋅∇=∫ ∂
∂−

)()(
)v(

VV
dVdV

t
rρρ

             (3.20) 

and 

    0)v((
)(

=∫ ⋅∇+
∂
∂

V
dV

t
rρρ

.             (3.21) 

From (3.21) it follows: 

     0)v( =⋅∇+
∂
∂ rρρ

t
.             (3.22) 

This is the continuity equation. If the fluid is incompressible ( .const=ρ ) 

the gradient of the density of an incompressible flow is zero and the partial 

derivative of density with respect to time is zero and (3.22) becomes: 

    0v =⋅∇ r
.               (3.23) 

The vector 

     vr
r

ρ=j                (3.24) 

is the density vector of the mass flux. 

 An incompressible flow can be described by using a velocity field which is 

solenoidal. A solenoidal field, has a zero divergence, and also has a non-zero curl 

(rotational component). If an incompressible flow also has a curl of zero, so that it 

is also irrotational, then the velocity field is actually Laplacian (Laplacian vector 
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field is a vector field which is both irrotational and incompressible). If the field is 

denoted as vr , then it is described by the following differential equations: 

     0v =×∇ r
               (3.25) 

and 

     0v =⋅∇ r
.               (3.26) 

Applications* 

The most common flow meter is the magnetic flow meter. A magnetic field 

is applied to the metering tube. A potential difference proportional to the flow 

velocity perpendicular to the flux lines appeared. The physical principle at work is 

electromagnetic induction. For the magnetic flow meter a conducting fluid is 

needed (water that contains ions) and an electrical insulating pipe surface (a 

rubber-lined steel tube). 

 Also, there are ultrasonic flowmeters.  

 

 3.1.4.2 Bernoulli’s Equation 

 

 In fluid flow, an increase in velocity occurs simultaneously with decrease in 

pressure. This is Bernoulli's principle. This principle is a simplification of 

Bernoulli's equation which states that the sum of all forms of energy in a fluid that 

flows along an enclosed path, a streamline has the same value at any two points in 

that path. 

Bernoulli's principle can be used to analyze the Venturi effect (is a special 

case of Bernoulli's principle) in the case of fluid or air flow through a tube or pipe 

that has a constriction in it. In the restriction the fluid is speeding up. Also, is 

reducing its pressure and producing a partial vacuum via the Bernoulli effect. This 

is used in carburetors and elsewhere. In a carburetor, air is passed through a 

Venturi tube for increasing its speed and decreasing its pressure. The low pressure 
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air is routed over a tube leading to a fuel bowl. The low pressure sucks the fuel into 

the airflow, and in this way the combined fuel and air is sent to the engine. The 

decreasing of pressure is proportional to the rate of air flow squared. 

We establish Bernoulli's equation. Upon an infinitesimal volume acts the 

volume force gdmGd rr
=  and it follows: 

g
dm
Gdf r
r

r
== .              (3.27) 

 We have ),0,0( ggg −= rr
 and with Euler’s equation fp

dt
d rr

+∇−=
ρ
1v

 we 

obtain the components: 

z
pg

dt
d

y
p

dt
d

x
p

dt
d

∂
∂−−=

∂
∂−=

∂
∂−=

ρρρ
1v,1v

,1v zyx . (3.28) 

We multiply the first equation (3.28) by dx , the second by dy  and the third 

by dz , we make the sum and one gets: 

dzgdz
z
pdy

y
pdx

x
p

dt
dzd

dt
dyd

dt
dxd −

∂
∂+

∂
∂+

∂
∂−=++ )(1vvv zyx ρ

, (3.29) 

or 

   dzgdpddd −−=++
ρ
1vvvvvv zzyyxx .  (3.30) 

We have for the speed 2
z

2
y

2
x

2 vvvv ++=  and 

)vvvvvv(2)d(v zzyyxx
2 ddd ++=  and (3.30) becomes: 

dzgdp −−=
ρ
1)d(v

2
1 2 .     (3.31) 

 Also, one obtains: 
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     0)v
2
1d( 2 =++ pzgρ .   (3.32) 

 From (3.32) it follows the Bernoulli's law for an ideal, incompressible flow 

in a uniform gravitational field that is given by: 

   .v
2
1 2 constpzg =++ ρρ        (3.33) 

In (3.33) p  is the static pressure, 2v
2
1 ρ  is the dynamic pressure and zgρ  

is the hydrostatic pressure. 

In the case of two arbitrary cross sections one obtains: 

  22
2
211

2
1 v

2
1v

2
1 pzgpzg ++=++ ρρρρ ,         (3.34.a) 

where 1v  is the speed at the 1S  surface and 2v  is the speed at the 2S  surface and  

11 hz =  and 22 hz = . 

 

 
 

Fig. 1.39 
 

Bernoulli’s law* 
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 For 12 vv <<  one gets: 

             (3.34.b) 

and the speed is given by: 

    )(2v 21 zzg −= .           (3.34.b)  

The fluid has the same velocity as it falls down free from a height 21 zz −  

(Torricelli law). 

The Bernoulli equation for incompressible fluids can be derived applying the law 

of conservation of energy in two sections along a streamline, without taking into 

account the viscosity, compressibility, and thermal effects.   

 

3.1.5 Viscosity. Laminar Flow. Navier-Stokes Equations. 

Transport Phenomena. Turbulence. Applications. 
 

 3.1.5.1 Viscosity. Laminar Flow. 

 
 In a fluid there are interactions between the infinitesimal volumes or 

between the fluid and the vessel. In these cases appear frictional forces between the 

layers of fluids or between the fluid and vessel. 

 Viscosity is a measure of the resistance of a fluid to deform under shear 

stress. It can be associated to thickness, or resistance to pouring. Viscosity 

describes a fluid's internal resistance to flow. It is a measure of fluid friction. 

Examples: water is thin, because it has a lower viscosity, while vegetable oil is 

thick because it has a higher viscosity. All real fluids (except superfluids) presents 

a resistance to shear stress. The ideal fluid is the fluid that has no resistance to 

shear stress. 
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Some of the real fluids are superfluids. The phase of matter characterized by 

the complete absence of viscosity is called superfluidity. Placed in a closed loop, a 

superfluid can flow endlessly without friction. In 1937 Pyotr Leonidovich Kapitsa, 

John F. Allen, and Don Misener discovered the superfluidity. The study of 

superfluidity is called quantum hydrodynamics. Lev Landau created the 

phenomenological theory of superfluidity in helium-4, and Nikolay Bogoliubov 

first suggested simple microscopical theory. When a wind is blowing over the 

surface of the ocean a shear stress is applied to the fluid. The fluid flows, and 

continues to flow while the stress is applied. When the stress is removed, in 

general, the flow decays due to internal dissipation of energy. Also, the thicker is 

the fluid, the greater is its resistance to shear stress and the more rapid the decay of 

its flow. In reality, when a fluid flows, the layers move at different velocities (there 

is not a single value for the velocity). The layers act one upon the other. The fluid's 

viscosity (thickness) arises from the shear stress between the layers that ultimately 

oppose any applied force. In the figures bellow we have two cases of laminar 

shear. The laminar flow is the flow for which the layers of fluid are parallel one to 

other. 
 

 
Fig. 1.40 
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Laminar shear of fluid between two plates. Friction between the fluid and 

the moving boundaries causes the fluid to shear. The force required for this action 

is a measure of the fluid's viscosity.* 

 

 

Fig. 1.41 
 

Laminar shear, the non-linear gradient, is a result of the geometry the fluid is 

flowing through (a pipe)* 

 

The viscosity is characterized by the coefficient of viscosity η , viscosity, or 

dynamic viscosity. The coefficient of viscosity η  depends on the fluid and 

temperature. For liquids, the dynamic viscosity decreases with the increasing of 

temperature and for gases increases with the increasing of temperature. The 

dynamic viscosity is implied in the expression of the shear stress and of the 

frictional force. For straight, parallel and uniform flow, the shear stress, τ , 

between layers is proportional to the velocity gradient, y∂∂ /v , ( y∂∂ /u  in the 

figure above), in the direction perpendicular to the layers. We have for the relative 



 114

motion of the layers the shear stress 
dy
dvητ = . Many fluids, water and most gases 

(Newtonian fluids), satisfy Newton's criterion (the relationship between shear 

stress and velocity gradient is of simple linearity). For the Non-Newtonian fluids 

there is a more complicated relationship between shear stress and velocity gradient 

than simple linearity. 

For the Newtonian fluids the frictional force is given by: 

    S
dy
dFr
vη−= ,              (3.35) 

where S  is the common area of two adjacent layers. In SI physical unit of dynamic 

viscosity η  is the pascal-second (Pa·s), which is identical to 1 kg·m-1·s-1.  

 For gases viscosity is due principally to the molecular diffusion that 

transports momentum between layers of flow. From the kinetic theory of gases we 

have that viscosity is independent of pressure and increases as temperature 

increases. 

 For liquids it is known that the additional forces between molecules become 

important. This implies the existence of an additional contribution to the shear 

stress though the exact mechanics of this are still controversial. Thus, in liquids 

viscosity does not depend on pressure (except at very high pressure) and tends to 

fall as temperature increases (for example, water viscosity goes from 1.79 cP to 

0.28 cP in the temperature range from 0°C to 100°C). 

 The values of dynamic viscosities of liquids are typically several orders of 

magnitude higher than the value of dynamic viscosities of gases. 

 Some dynamic viscosities of Newtonian fluids are given in the table below, 

for gases and liquids.* 
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gases (at 0 °C) 

 viscosity (Pa·s) 

hydrogen 8.4 × 10-6 

air 17.4 × 10-6 

xenon 21.2 × 10-6 

 

and liquids (at 25 °C) 

 

 viscosity (Pa·s)

ethanol a 1.074 × 10-3 

acetone a 0.306 × 10-3 

methanol a 0.544 × 10-3 

propanol a 1.945 × 10-3 

benzene a 0.604 × 10-3 
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water a 0.890 × 10-3 

nitrobenzene a 1.863 × 10-3 

mercury a 1.526 × 10-3 

sulfuric acid a 24.2 × 10-3 

glycerol a 934 × 10-3 

olive oil 81 × 10-3 

castor oil 0.985 

molten polymers 103 

pitch 1011 

glass 1040 

 

The viscometer or viscosimeter is used for measure the viscosity, typically at 

25°C (standard state). For some fluids, it is a constant over a wide range of shear 

rates. The viscometer is also used to measure the flow parameters of a fluid. The 
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classical method of measuring due to Stokes, consisted of measuring the time for a 

fluid to flow through a capillary tube. The glass tube viscometer was refined by 

Cannon, Ubbelohde and others and is the best method for the standard 

determination of the viscosity of water. The viscosity of water at 25 degrees 

Celsius is 0.890 mPa·s or 1.002 mPa·s at 20 degrees Celsius. The required force for 

rotating a disk or bob in a fluid at a known speed can be measured with the 

Brookfield-type viscometer. The function of other viscometer types is based on the 

use of bubbles, balls or other objects. Rheometers or plastometers are the 

viscometers that can measure fluids that have high viscosity or molten polymers. 

Vibrational viscometers date back to the 1950s Bendix instrument, which is 

of a class which operates by measuring the damping of an oscillating 

electromechanical resonator immersed in a fluid whose viscosity is to be 

determined. The resonator generally oscillates in torsion or transversely. A higher 

value of the viscosity determines a larger damping imposed on the resonator. The 

resonator's damping may be measured using one of the methods: 

1. Measuring the power input that is needed for keeping the oscillator 

vibrating at constant amplitude. A higher value of the viscosity determines a 

greater value of the power that is needed to maintain the amplitude of oscillation. 

2. Evaluating the decay time of the oscillation once the excitation is 

switched off. A higher value of the viscosity implies a faster signal decays. 

3. The frequency of the resonator can be measured as a function of phase 

angle between excitation and response waveforms. The frequency change for a 

given phase changes increases for a higher value of the viscosity 
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3.1.5.2 Navier-Stokes Equations. 

 

For ideal fluids the motion is described by the Euler equation 

fp
dt
d rr

+∇−=
ρ
1v

. In the case of the fluids which has viscosity we have to add in 

the Euler equation a term that corresponds to the internal frictional forces (viscous 

forces) between the layers of fluid. The Navier Stokes equations govern the fluid 

hydrodynamics. We give the Navier-Stokes equations which are a set of equations 

that describe the motion of fluid substances such as liquids and gases. These 

equations establish that changes in momentum (acceleration) of fluid particles are 

the product of changes in pressure and dissipative viscous forces (similar to 

friction) acting inside the fluid. These viscous forces are due to the molecular 

interactions and control the stickiness (viscosity) of a fluid. The Navier-Stokes 

equations represent the dynamical statement of the balance of forces acting at any 

given region of the fluid. Some applications of the Navier Stokes equations are: 

modeling of the weather, ocean currents, water flow in a pipe, motion of stars 

inside a galaxy, flow around an airfoil (wing). Also, they play an important role in 

the design of aircraft and cars, the study of blood flow, the design of power 

stations, the analysis of the effects of pollution, etc. 

The Navier-Stokes equations are differential equations which describe the 

motion of a fluid. The Navier-Stokes equations for the ideal fluid with zero 

viscosity establish that acceleration (the rate of change of velocity) is proportional 

to the derivative of internal pressure. 

The flow is assumed to be differentiable and continuous, allowing the 

conservation laws to be expressed as partial differential equations. In the case of 

incompressible flow (constant density), the variables to be solved for are the 

velocity components and the pressure. 
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For the motion of the fluid against the Ox axis and with 

dzSdVdm ρρ ==  one has: 

2
x

2v1)(1)()(
zdz

dF
Sdm

dFf xrxr
xr ∂

∂−=== η
ρρ

.  (3.36) 

 If we have a velocity gradient against an arbitrary direction it one gets: 

   x
2

2
x

2

2
x

2

2
x

2

v1)vvv(1)( ∇−≡
∂
∂+

∂
∂+

∂
∂−= η

ρ
η

ρ zyx
f xr .    (3.37) 

 For the components yrf )(  and zrf )(  of the frictional force it follows: 

y
2

2
y

2

2
y

2

2
y

2

v1)
vvv

(1)( ∇−≡
∂
∂

+
∂
∂

+
∂
∂

−= η
ρ

η
ρ zyx

f yr  (3.38) 

and 

   z
2

2
z

2

2
z

2

2
z

2

v1)vvv(1)( ∇−≡
∂
∂+

∂
∂+

∂
∂−= η

ρ
η

ρ zyx
f zr . (3.39) 

 We can write the last three equations using vectors and one gets: 

     v1v1 2 rrr
Δ−≡∇−= η

ρ
η

ρrf .   (3.40) 

 The equation of motion for a fluid with viscosity is given by: 

     v11v rrr
Δ++∇−= η

ρρ
fp

dt
d

.   (3.41)  

 Also, one has: 

    fp
t

rrrr
r

+Δ−∇−=∇⋅+
∂
∂ )v(1v)v(v η

ρ
.         (3.42.a) 

We can write (3.42.a) as it follows: 

     fp
t

rrrr
r

+Δ+−∇=∇⋅+
∂
∂ v)vvv( ηρ ,                (3.42.b) 
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where: 

- )vvv( rr
r

∇⋅+
∂
∂

t
ρ  represents the inertia; 

- p∇−  is the pressure gradient; 

- vrΔη  is the viscosity (viscous stresses in the fluid) and the viscosity is 

represented by the vector Laplacian of the velocity field; 

- f
r

 represents the effect due to other forces.  

 Equation (3.41) and (3.42.a) are the Navier-Stokes equations. Together with 

the continuity equation determines the velocity field ),v tr(rr  and the pressure field 

),( trp r
 of a fluid for suitable boundary conditions. In the case of compressible 

flow the density becomes another unknown of the system, and can be determined 

supplementing the system with an equation of state. An equation of state usually 

involves the temperature of the fluid, so that the equation for conservation of 

energy must also be solved, coupled with the previous ones. These equations are 

non-linear, and analytical solutions in closed form are known only for cases with 

very simple boundary conditions. 

 

3.1.6 Turbulence 

 
 Turbulence is the time dependent chaotic behavior that appears in many 

cases in fluid flows. 

In fluid dynamics, potential flow or irrotational flow (of incompressible 

fluids) is steady flow defined by the equations: 

 
     0v =×∇ r

           (3.43) 

and 
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    0v =⋅∇ r
.           (3.44) 

First equation means zero rotation and second equation implies zero 

divergence that equals to volume conservation. Also, one gets: 

    Φ∇=vr ,           (3.45) 

where Φ  is the potential. The potential flow has many applications in aircraft 

design. 

The equations above imply 02 =Φ∇ , or Laplace's equation, holds. 

Solutions of Laplace's equation are called harmonic functions. These equations, the 

Navier-Stokes equations and the Euler equations, can be used to calculate solutions 

to many practical flow situations. 

 It is obviously that the potential flow does not contain all the characteristics 

of flows that are encountered in real situations. If the flow is potential this implies 

the exclusion of turbulence, which is commonly encountered in nature. The 

opinion of Richard Feynman is that potential flow is so unphysical that the only 

fluid to obey the assumptions was dry water. 

 Also, potential flow it is not properly to describe the behaviour of flows that 

include a boundary layer. The boundary layer is that layer of fluid in the immediate 

vicinity of a bounding surface. In the atmosphere the boundary layer is the air layer 

near the ground that is affected by diurnal heat, moisture or momentum (in transfer 

ring with the Earth surface). The part of the flow that is close to the wing 

represents the boundary layer for an aircraft wing. In the field region in which all 

changes occur in the flow pattern it appears the Boundary layer effect. The 

boundary layer is able to modify surrounding non viscous flow. Also, the boundary 

layer is due to viscous forces. 

The simple potential flows (elemental flows) such as the free vortex and the 

point source have analytical solutions. These solutions can be superposed and in 
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this way can be created more complex flows. These flows satisfy a number of 

boundary conditions. 

Any streamline can be replaced by a solid boundary with no change in the 

flow field, and this is because of the absence of boundary layer effects. This 

technique is used in many aerodynamic design approaches. 

In fluid mechanics there are two limiting vortex cases. These are the free 

(irrotational) vortex, and the forced (rotational) vortex. 

In the free (irrotational) vortex the tangential velocity v  varies inversely as 

the distance r  from the centre of rotation. In this case the angular momentum is 

constant. This implies that the vorticity is zero everywhere except for a singularity 

at the centre-line. 

The tangential velocity is given by: 

    
r2

v
π
Γ= ,           (3.46) 

where Γ  is the vortex strength. 

 In the forced vortex the fluid rotates as a solid body with no shear. We can 

realized the forced vortex by placing a dish of fluid on a rotating turntable. 

 The tangential velocity is given by: 

     rω=v ,           (3.47) 

where ω  is the angular velocity and r  is the radial distance from the center of the 

vortex. 

 Vortices appear in turbulent flow. Any circular or rotary flow that possesses 

vorticity represents a vortex. The vorticity is a vector and is given by the 

circulation per unit area at a point in the flow field. The movement of a fluid is 

vortical if the fluid moves around in a circle, or in a helix, or if it tends to spin 

around some axis. Such motion can also be called solenoidal. Vorticity is given by: 
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     vrr ×∇=ω ,           (3.48) 

where vr  is the fluid velocity. It can be also expressed by the circulation per unit 

area at a point in a fluid flow field. It is a vector that has the direction along the 

axis of the fluid's rotation. 

 Turbulence or turbulent flow is a flow regime characterized by chaotic 

property changes. There are rapid variation of pressure and velocity in space and 

time. 

We can classify the fluid flows in laminar and turbulent flows with the 

Reynolds number. The Reynolds number is given by: 

     
μ

ρ LvRe = ,          (3.49) 

and is equal to the ratio of inertial forces vρ  to viscous forces 
L
μ

. It is 

dimensionless. The transition between laminar and turbulent flow is indicated by a 

critical Reynolds number crtRe . For circular pipe flow, a Reynolds number above 

about 2300 will be turbulent. For laminar flow we have low Reynolds numbers, 

and the viscous forces are dominant. It is characterized by smooth, constant fluid 

motion. For turbulent flow we have high Reynolds numbers and is dominated by 

inertial forces, producing random eddies, vortices and other flow fluctuations. 

 Some characteristics of the turbulent flow are: 

- there are not streamlines and the velocity field vr  is not a continue function of any 

point; 

- the turbulent flow is not stationary and we have 0
t
v ≠
∂
∂r

, which means that there 

are rapid variation of velocity in space and time; 
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- the frictional (viscous) force is not proportional to the velocity v , but is 

proportional to nv , where 1>n . 

 Examples of vortex: 

- vortex created by the passage of an aircraft wing; 

- the spiraling motion of air or liquid around a center of rotation; 

- circular current of water of conflicting tides form vortex shapes; 

- the atmospheric phenomenon of a whirlwind (takes the form of a helix, column, 

or spiral) or a tornado (develop from severe thunderstorms, usually spawned from 

squall lines (organized lines of thunderstorms) and super cell thunderstorms (a 

severe thunderstorm), though they sometimes happen as a result of a hurricane); 

- vortex usually formed as water goes down a drain, as in a sink or a toilet. This 

occurs in water as the revolving mass forms a whirlpool (a large, swirling body of 

water produced by ocean tides). This whirlpool is caused by water flowing out of a 

small opening in the bottom of a basin or reservoir. This swirling flow structure 

within a region of fluid flow opens downward from the water surface. 

 

 
 

Fig. 1.42 
 
Vortex created by the passage of an aircraft wing, revealed by coloured smoke*  
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Multiple vortices appear in the case of stronger tornadoes, the tornado 

contains several vortices that rotates around and inside of and part of the main 

vortex. Also, these stronger tornadoes have many columns of violently spinning air 

that rotate around a common center. A satellite tornado is a weak tornado which ia 

accompanying a large, strong tornado, many times it ends in no more than a 

minute. 

 

Fig. 1.43 
 

Union City, Oklahoma tornado (1973)* 

 

A tropical cyclone represents a storm system that is characterized by a closed 

circulation around a centre of low pressure. The tropical cyclone is generated by 

the heat transferred by the air that rises and condenses. Tropical cyclones are called 

tropical depression, tropical storm, hurricane and typhoon, this classification being 

in strong connection with their strength and location.  
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Fig. 1.44 
 

Cyclone Catarina, a rare South Atlantic tropical cyclone viewed from the 

International Space Station on March 26, 2004* 

 
A whirlpool consists of a large, swirling body of water that is generated by 

ocean tides. 

 

Fig. 1.45 
 

Saltstraumen a strong tidal current located some 30 km east of the city of Bodø, 

Norway* 

 
Other examples of vortex are: 
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- the acceleration of the electric fluid in a particular direction creates a positive 

vortex of magnetic fluid. As a result, a corresponding negative vortex of electric 

fluid is generated around it; 

- a ring of smoke in the air 

- Polar vortex that represents a persistent, large-scale cyclone encountered near the 

Earth's poles, in the middle and upper troposphere and the stratosphere; 

- Sunspot that is a dark region on the Sun's surface (photosphere) that is 

characterized by a lower temperature than its surroundings, and has an intense 

magnetic activity; 

- the accretion disk of a black hole or other massive gravitational source; 

- Spiral galaxy that is a type of galaxy in the Hubble sequence which is 

characterized by a thin, rotating disk. Our galaxy, the Milky Way is of this type. 
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Seminar 1 
 
1.1 Cartesian Coordinates. Dot Product, Cross Product and Vector 

(Differential) Operators. 

 

The reference system can be inertial or non-inertial. The inertial reference 

system is the system that has a rectilinear uniform motion or is at relative rest. The 

non-inertial reference system has an accelerated motion. Under classical mechanics 

and special relativity, the inertial reference systems are considered.  

To the reference system there is rigidly attached a reference frame. The 

motion of a moving body is univocally determined if, each moment, its coordinates 

are known in relation with the reference system chosen. In mechanics there are 

especially used: 

3) Cartesian coordinate system 

4) spherical coordinate system 

In the Cartesian coordinate system the position of a point P is given by the 

Cartesian coordinates x, y and z (Fig. 1.46). The vector rr , that connects the origin 

with point P, is called position vector or radius vector. 

   rr = x i
r

+ y j
r

 + zk
r

.         (1.1) 

 

 

 

 

                                                        

 
 

  Fig. 1.46      Fig. 1.47 
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In general, any arbitrary vector A can be written:  

   kAjAiAA zyx

rrrr
++=  ,          (1.2) 

where xA , A y  and A z  are called the components of vector A
r

 (Fig. 1.47). 

According to the components, the length (magnitude) of vector A
r

 is: 

   222
zyx AAAAAA ++=⋅=

rr
,        (1.3) 

and i
r

, j
r

 and k
r

 are unit vectors of the coordinate axes. One knows they satisfy 

the relations: 

1=== kji
rrr

; =⋅ ii
rr

j
r
· j
r

=k
r
·k
r

= 1; 

0=⋅=⋅=⋅ kjkiji
rrrrrr

                         

In the spherical coordinates system the position of a point P is given by the 

spherical coordinates r, θ, φ. 

 Let us consider two vectors A
r

 and B
r

. We define the dot (scalar) product: 

 
αcosBABA =⋅

rr
,         (1.4) 

where α  is the angle between the two vectors A
r

 and B
r

. In Cartesian coordinates 

with kAjAiAA zyx

rrrr
++=  and kBjBiBB zyx

rrrr
++=  we get: 

 
zzyyxx

zyxzyx

BABABA

kBjBiBkAjAiABA

++=

=++⋅++=⋅ )()(
rrrrrrrr

                (1.5.a) 

 Also, we define for the vectors A
r

 and  B
r

 the cross product: 

 
    αsinBAnBAC rrrr

=×=  ,                                     (1.5.b) 
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where nr  is an unit vector normal (perpendicular) to both A
r

 and B
r

. The cross 

product is defined as the vector which is normal (perpendicular) to both A
r

 and B
r

 

with a magnitude equal to the area of the parallelogram they span. It has the length 

(magnitude) 

                αsinBAC =                         (1.5.c) 

An easy way to compute the direction of the resultant vector is the "right-hand 

rule." One simply points the forefinger in the direction of the first operand and the 

middle finger in the direction of the second operand. Then, the resultant vector is 

coming out of the thumb. 

 In Cartesian coordinates one gets: 

 

    

zyx

zyx

BBB
AAA
kji

BA

rrr

rr
=× .           (1.6) 

 

Exercise 1: 

Let us consider the pairs of vectors: 

1) kjiA
rrrr

245 +−=  and  kjiB
rrrr

++−= 32 , 

2) kjiC
rrrr

244 −−=   and  kjiD
rrrr

37 −+=  

and compute the dot product and the cross product in these two cases. 

 
A vector operator is a type of differential operator used in vector calculus. 

Now, we define the vector (differential) operators: del ∇ (nabla), gradient, 

divergence, curl and Laplacian. 
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1) Del ∇  (nabla) 

In vector calculus, del is a vector differential operator represented by the nabla 

symbol. In Cartesian coordinates is defined as: 

k
z

j
y

i
x

rrr

∂
∂+

∂
∂+

∂
∂=∇ .         (1.7) 

With del we define the gradient, divergence, curl and Laplacian. 

 
2) Gradient 

Let ϕ  be a scalar function and we get the gradient of ϕ  in Cartesian 

coordinates: 

  k
z

j
y

i
x

grad
rrr

∂
∂+

∂
∂+

∂
∂=∇= ϕϕϕϕϕ .                              (1.8) 

The vector field ϕgradA =
r

 is called potential (curl-free) field. Example, 

the static field VgradE −=
r

, where V  is the electric potential ),,( zyxV . Also, 

the gravitational field is an example of such a field: gravity gradients, see in the 

figure below. 
 

 

Fig. 1.48* 
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3) Divergence 

Let us consider the vector kAjAiAA zyx

rrrr
++=  (Cartesian coordinates) and 

we define the divergence of A
r

: 

  
z
A

y
A

x
AAA zyx

∂
∂+

∂
∂

+
∂
∂=⋅∇=

rr
div .        (1.9) 

The vector field that satisfies 0=⋅∇ A
r

 is a solenoidal  field. Example: 

induction B
r

 (magnetic field). Also, the velocity field of an incompressible fluid 

flow is solenoidal. 

 
Divergence Theorem (Green-Gauss-Ostrogradski Theorem): 

   ∫∫ ⋅∫∫∫ =⋅∇
SV

SdAdVA
rrr

              (1.10) 

The divergence theorem states that the flux of a vector field on a surface is 

equal to the triple integral of the divergence on the region inside the surface. 

Exercise 2: 

Suppose we wish to evaluate the flux of the vector A
r

, ∫∫ ⋅
S

dSnA rr
 where S is the 

unit sphere defined by x2 + y2 + z2 = 1 and kzjyixA
rrrr

222 ++=  is the vector 

field.  

 
4) Curl 

In vector calculus, curl is a vector operator that shows a vector field’s rate of 

rotation: the direction of the axis of rotation and the magnitude of the rotation. 

Let us consider the vector kAjAiAA zyx

rrrr
++=  (Cartesian coordinates) and 

we define the curl of A
r

 (del cross A
r

) as: 
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zyx AAA
zyx

kji

AAcurl
∂
∂

∂
∂

∂
∂=×∇=

rrr

rr
.   (1.11) 

The vector field that satisfies 0=×∇ A
r

 is an irrotational field. Example: 

static field E
r

. In fluid mechanics, an irrotational field is practically synonymous 

with a lamellar field. The adjective "irrotational" implies that irrotational fluid 

flow (whose velocity field is irrotational) has no rotational component: the fluid 

does not move in circular or helical motions; it does not form vortices.  Opposite: 

vortex or helices, see figures below. 

                     

 

Fig. 1.49*     Fig. 1.50* 

 
Stokes-Ampère Theorem: 

   ∫∫ ⋅=∫ ⋅
SC

SdAldA
rrr

rot
)(

              (1.12) 

which relates the surface integral of the curl of a vector field over a surface S in 

Euclidean 3 space to the line integral of the vector field over its boundary. 
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5) Laplacian 

The Laplace operator is a second order differential operator, defined as the 

divergence of the gradient: 

    ∇⋅∇=∇=Δ 2 .                        (1.13) 

 
 The Laplacian is the sum of all the unmixed second partial derivatives. In 

the three-dimensional space the Laplacian is commonly written as 

  2

2

2

2

2

2
2

zyx ∂
∂+

∂
∂+

∂
∂=∇⋅∇=∇=Δ .                               (1.13) 

 
 Exercise 3: 

Let us consider the scalar functions: 

1) )sin(342 2 zyyx −+=ϕ , 2) zyxzyzyx 754 2' +−=ϕ  

and compute the gradient in the both cases. 
 

Exercise 4: 

Let us consider the pairs of vectors: 

1) kzjyixA
rrrr

245 2 +−=  and kzyjzyxiyB
rrrr

++= 32 , 

2) kyxjzyxizxC
rrrr

24 2 +−−=   and  kzyxjzxixD
rrrr

32 −+=  

and compute the divergence and the curl. 
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Seminar 2 
 

1. Draw the space, speed and acceleration graphs after 2 seconds from the 

beginning of the motion of a material point, whose acceleration is given by the 

ratio tka = , where k  = 0.1 m/s3, considering that at the initial moment, the speed 

is zero, and the space is 5 m . 

2. Determine the speed and space of a material point whose acceleration depends 

on the speed according to the law 2vka −= , knowing that when 0=t , 0vv =  

and 0ss = . 

3. Consider a motion defined by the parametric equations 
4
13 += tex , 

14 −= tey . Determine trajectory of the material, its speed and acceleration. 

4.  A constant force F
r

 is acting upon a body with mass m . The motion is along 

axis x  and the coefficient of friction is μ . At the initial moment, the velocity is 

0vr . Determine the equation of motion if 0vr  is parallel to F
r

. 

5) On a body with  kgm 1= , acts the force with an instantaneous value of 

)()(32 2222 NkyxjxiyF
rrrr

+−+= . At the initial moment, the body is in 

the position )0,3,2(M  and its velocity is )/(3v0 smkj
rr

+= . When 0=t , 

determine: a) the 0F
r

 force acting on the body; b) the acceleration of the body 

0ar ; c) kinetic 0cE  energy; d) rate of change of the kinetic energy. 

6) Determine the equation of motion of a material point that is moving in the field 

given by 4)( xAxU −= , if its energy is zero. 

7) Two springs with elastic constants 1k  and 2k  are series connected and have a 
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fixed extremity. At the free extremity there is a body hanging. Determine the 

springs’ 21 / pp EE  energies ratio. 
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Seminar 3 
 

1) A material point describes two normal motions, given by equations 

tx 3cos10=  cm and ty 3sin10=  cm. Lets determine trajectory, speed 

and acceleration. 

2) The parametric equations of a motion of a material point are given by 

)cos1(,cos 2 tk
k
gytkax −== . Lets determine trajectory and 

displacement if at 0=t , 0=s . 

3) Knowing the speeds 3v1 =  cm/s and 5v2 =  cm/s which correspond to the 

displacements 61 =x  cm and 42 =x  cm, let determine: a) maximum of 

displacement (amplitude) and period of the harmonic oscillations, b) 

maximum of acceleration. 

4) A body of mass 150=m  g is connected to a spring with constant spring 

50=k  N/m and describes damped oscillations. After 15=n  oscillations 

the amplitude decreases and becomes 71,2/0A . Lets determine: a) damping 

ratio β , b) period T , c) damping factor δ . 

5) A bob pendulum describes damped oscillations with the damping ratio 

04,0=β . After 50  s, the energy of the bob pendulum decreased and 

becomes 39,7/1E . Let determine the length of the wire (pendulum). 

6) For the damped oscillations with 15,0=β  lets determine the ratio 

)(v/)(v tTt +  and the ratio )(/)( taTta + . 
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Seminar 4 
 

1) A body of mass 150=m  g is connected to a spring with constant spring 

50=k  N/m and describes damped oscillations. After 15=n  oscillations 

the amplitude decreases and becomes 71,2/0A . Lets determine: a) damping 

ratio β , b) period T , c) damping factor δ . 

2) A bob pendulum describes damped oscillations with the damping ratio 

04,0=β . After 50  s, the energy of the bob pendulum decreased and 

becomes 39,7/1E . Lets determine the length of the wire (pendulum). 

3) We have two harmonic oscillations on the same direction described by the 

equations )
63

2sin(01.01
ππ += tx  m and )

33
2sin(05.02

ππ += tx  m. Let 

determine the equation of the combined motion. 

4) Lets determine the resultant motion of a material point that is undergoing two 

orthogonal motions given by: 

a) )
26

sin(3 ππ += tx ; ty
6

sin2 π=  

b) )
2

32sin(6 ππ += tx ; ty π2sin6=  

c) )
6

sin(3 ππ += tx ; )
6

sin(4 ππ += ty . 

5) Lets determine the trajectory of a mobil that is undergoing two orthogonal 

harmonic oscillations given by )
22

sin( ππ += tx  and ty
4

cos2 π= . 
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Seminar 5 
 

1) A body is hanging on a spring and has the period s2 . Upon it are acting a 

sinusoidal force with amplitude NF 1.0=  and a frictional force proportional to 

velocity. Knowing that at the resonance of speeds the amplitude of oscillations is 

cmA 50 = , lets determine the damper constant γ . 

2) A body of mass gm 250=  is undergoing damped oscillations with the 

damping factor 1785.0 −= sδ  and the period of the simple harmonic oscillations is 

sT
3

2
0 = . The body is undergoing driven oscillations when an external force 

)(2sin1.0 NtF π=  is acting upon it. Lets write the law of motion for the driven 

oscillations. 

3) A source placed in an elastic medium emits plane waves 

)(100sin25.0 mmty π= . The wavelength of the longitudinal waves is 

m10=λ . Lets determine: 

a) the time that a point placed at the distance mx 81 =  far from the source needed 

to begins to oscillate and the phase difference between the oscillation of this point 

and source 

b) the distance between two points which have the phase difference 
6
π

 

c) the phase difference between two points which are placed at 
2
λ

 one from the 

other 

4) The amplitude of a simple harmonic oscillation is cmA 10= , the frequency is 

Hz4=ν  and the velocity is smv /100= . Lets determine the displacement, the 
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velocity and acceleration of points placed at the distance mx 75=  far from the 

source at the moment st 1=  after the beginning of the motion. 
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Seminar 6 
 

1. A string AB with length ml 9=  is fixed to the B extremity. The B extremity 

oscillates transversely with amplitude cmA 5=  and frequency Hz10=ν . The 

wave velocity is sm /3,4v = . Lets determine the law of oscillations of a point M 

if the displacement MB is cmx 75,93=  and the positions of the troughs 

(minimum). 

2. In a steel rod propagate longitudinal waves. The diameter of the rod is 

mmd 4= , amplitude of oscillations mmA 1,0=  and frequency Hz10=ν . Let 

determine: 

a) equation of the wave 

b) wave energy density 

c) average flux of energy 

We know the Young’s modulus 211 /102 mNE ⋅=  and linear density 

33 /108,7 mkg⋅=ρ . 

3. Discussions about the equation of the wave, wave energy density and average 

flux of energy. 
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Seminar 7 
 

1. In a vessel which contains mercury is putted a vertical tube with cross section 
210 cmS = . The tube has a piston with mass kgm 2= . Initially, the piston is at 

the same level with the mercury contained in the vessel. The piston is displaced 

above at mh 2,0= . Lets determine: 

a) the force that acts upon the piston when the height of the mercury in the tube is 

mh 2,0= . The linear density is 313580 kg/m=ρ . 

b) the mechanical work done when the piston have been displaced at  mh 2,0=  

2. A syringe has the cross section of the piston 2
1 2,1 cmS =  and the cross section 

of the needle 2
2 8,0 mmS = . The piston is displaced with cml 6= . In the 

syringe here is a liquid with linear density 33 /104,1 mkg⋅=ρ . Upon the piston 

acts the constant force mNF 258,47= . Lets determine the required time for 

putting out the liquid from the syringe. 

3. Discussion about the fundamental law of hydrodynamics, hydrostatic pressure 

and Bernoulli’s equation. 
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